-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentation3.tex
738 lines (444 loc) · 20.2 KB
/
presentation3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Beamer Presentation
% LaTeX Template
% Version 1.0 (10/11/12)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND THEMES
%----------------------------------------------------------------------------------------
\documentclass{beamer}
%\newtheorem{problem}{Problem}
%\setbeamertemplate{footline}[frame number]{}
\setbeamertemplate{navigation symbols}{}
\mode<presentation> {
% The Beamer class comes with a number of default slide themes
% which change the colors and layouts of slides. Below this is a list
% of all the themes, uncomment each in turn to see what they look like.
%\usetheme{default}
%\usetheme{AnnArbor}
%\usetheme{Antibes}
%\usetheme{Bergen}
%\usetheme{Berkeley}
%\usetheme{Berlin}
%\usetheme{Boadilla}
%\usetheme{CambridgeUS}
%\usetheme{Copenhagen}
%\usetheme{Darmstadt}
%\usetheme{Dresden}
%\usetheme{Frankfurt}
%\usetheme{Goettingen}
%\usetheme{Hannover}
%\usetheme{Ilmenau}
%\usetheme{JuanLesPins}
%\usetheme{Luebeck}
\usetheme{Madrid}
%\usetheme{Malmoe}
%\usetheme{Marburg}
%\usetheme{Montpellier}
%\usetheme{PaloAlto}
%\usetheme{Pittsburgh}
%\usetheme{Rochester}
%\usetheme{Singapore}
%\usetheme{Szeged}
%\usetheme{Warsaw}
%\DeclarePairedDelimiter\ceil{\lceil}{\rceil}
%\DeclarePairedDelimiter\floor{\lfloor}{\rfloor}
\newcommand{\minpol}{\textnormal{MinPoly}_{\mathbb{F}}}
% As well as themes, the Beamer class has a number of color themes
% for any slide theme. Uncomment each of these in turn to see how it
% changes the colors of your current slide theme.
\usepackage{makecell}
%\usecolortheme{albatross}
%\usecolortheme{beaver}
%\usecolortheme{beetle}
%\usecolortheme{crane}
%\usecolortheme{dolphin}
%\usecolortheme{dove}
%\usecolortheme{fly}
%\usecolortheme{lily}
%\usecolortheme{orchid}
%\usecolortheme{rose}
%\usecolortheme{seagull}
%\usecolortheme{seahorse}
%\usecolortheme{whale}
%\usecolortheme{wolverine}
\newcommand{\N}{\mathbb{N}}
\newcommand{\K}{\mathbb{K}}
%\newcommand{\L}{\mathbb{L}}
\newcommand{\F}{\mathbb{F}}
%\setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line
%\setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line
%\setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line
}
\usepackage{graphicx} % Allows including images
\usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{colortbl}
%\newcommand\keq{\stackrel{\mathclap{\mbox{\tiny k-uni}}}{=}}
\newcommand{\f}{\mathbb{F}}
\newcommand{\ot}{\widetilde{O}}
\newcommand{\blue}{\textcolor{blue}}
\newcommand{\red}{\textcolor{red}}
\newcommand{\green}{\textcolor{green}}
\newcommand{\purple}{\textcolor{purple}}
\newcommand{\spa}{\vspace{0.2cm}}
%----------------------------------------------------------------------------------------
% TITLE PAGE
%----------------------------------------------------------------------------------------
\title[]{Computing the Characteristic Polynomial of a Finite Rank Two Drinfeld Module} % The short title appears at the bottom of every slide, the full title is only on the title page
\author{\'Eric Schost and Yossef Musleh} % Your name
\institute[UW] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space
{
University of Waterloo \\ % Your institution for the title page
\medskip
\textit{eschost@uwaterloo.ca, ymusleh@uwaterloo.ca} % Your email address
}
\date{\today} % Date, can be changed to a custom date
\begin{document}
\begin{frame}
\titlepage % Print the title page as the first slide
\end{frame}
%\begin{frame}
%\frametitle{Overview} % Table of contents slide, comment this block out to remove it
%\tableofcontents % Throughout your presentation, if you choose to use \section{} and \subsection{} commands, these will automatically be printed on this slide as an overview of your presentation
%\end{frame}
%----------------------------------------------------------------------------------------
% PRESENTATION SLIDES
%----------------------------------------------------------------------------------------
\begin{frame}
\frametitle{Motivation}
Elliptic Curves: Important to Classical Algebraic Geometry and Number Theory
\begin{itemize}
\item Fermat's Last Theorem
\item Birch and Swinnerton-Dyer Conjecture
\item Elliptic Curve Cryptography
\end{itemize}
Drinfeld Modules
\begin{itemize}
\item Rank 2 case a "function field analogue of elliptic curves"
\item Used to prove special cases of Langlands Conjectures \textcolor{blue}{[Drinfeld, 1974]}
\item Used in polynomial factorization algorithms over finite fields
\item Cryptography over Drinfeld modules - insecure \blue{[Scanlon, 2001]}
\end{itemize}
\end{frame}
%--------------------------
\begin{frame}
\frametitle{Motivation}
\item The characteristic polynomial associated to a Drinfeld Module were studied extensively by Gekeler and Jung.
\item Explored whether conjectures concerning the distributions of Frobenius traces for elliptic curves might have parallels in the Drinfeld case \blue{[Jung, 2000]}
\end{frame}
%---------------------------
\begin{frame}
\frametitle{Background and Notation}
\begin{itemize}
\item $\mathbb{L} = \mathbb{F}_q[T]/f(T)$
\item deg$(f) = n$
\item $\gamma: \mathbb{F}_q[T] \to \mathbb{L}$ finite fields
\item $\sigma(x) := x^q$
\item $\mathbb{L}[X,\sigma] := $ skew polynomials over $\mathbb{L}$ subject to $Xa = \sigma(a)X$ for $a \in \mathbb{L}$
\item Runtimes given count bit operations unless stated otherwise
\end{itemize}
\end{frame}
\begin{frame}{Background and Notation}
%\begin{example}
%Let $\mathbb{F} = \f_2$, \mathbb{L} = \f_2[x]/(x^2 + x + 1)$, %$\sigma(x) = x^2$
%\[ a:= (x + 1)X^2 + xX + x + 1 \]
%\[b := X\]
%\[ab = (x + 1)X^3 + xX^2 + (x + 1)X\]
%\[ba = xX^3 + (x+1)X^2 + xX \]
%\end{example}
\begin{example}
Let $q = 2$, $\mathbb{L} = \mathbb{F}_2[T]/(T^2 + T + 1) = \mathbb{F}_4$, $\sigma(T) = T^2$
\[ a:= (T + 1)X^2 + TX + T + 1 \]
\[b := X\]
\[ab = (T + 1)X^3 + TX^2 + (T + 1)X\]
\[ba = TX^3 + (T+1)X^2 + TX \]
\end{example}
\end{frame}
%------------------------------------------------
%-------------------------------------
%\begin{frame}\frametitle{Drinfeld Modules: Preliminaries}
%\end{frame}
%-------------------------------------
\begin{frame}
\frametitle{Drinfeld Modules}
\begin{definition}
A \textbf{Drinfeld Module} is a ring homomorphism $\varphi: \mathbb{F}_q[T] \to \mathbb{L}[X,\sigma]$ such that
\centerline{ $\varphi(T) = \gamma(T) + a_1X + \ldots + a_rX^\red{r}$ with $a_\red{r} \neq 0$ for some $\red{r} \geq 1$}
\end{definition}
The value $\red{r}$ is referred to as the \blue{\textit{rank}} of the Drinfeld Module
\vspace{0.2cm}
The case where $r = 1$ is known as a \blue{\textit{Carlitz Module}}.
\spa
In the rank-2 case we say $\varphi = (g, \Delta)$ with $\varphi(T) = \gamma(T) + gX + \Delta X^2$
\spa
To every elements of $\mathbb{L}[X,\sigma]$ we can associate an endomorphism of $\mathbb{L}$, in which case we will write $\varphi_c := \varphi(c)$
\end{frame}
\begin{frame}{Drinfeld Modules}
\begin{example}
Let $q =2$, $\mathbb{L} = \mathbb{F}_2[T]/(T^2 + T + 1)$.
\[ \gamma : f(T) \mapsto f(T) \mod T^2 + T + 1 \]
\[ \varphi_T := T + \blue{1}X + \red{1}X^2 \]
\[ \varphi = (\blue{1},\red{1})\]
\end{example}
\end{frame}
%-----------------------------------
\begin{frame}
\frametitle{Point Counting}
\blue{Classical problem: given an elliptic curve $E$, find the number of points over some finite field $\mathbb{F}_q$}
\spa
Schoof gave the first polynomial time algorithm
\spa
Based on Hasse's theorem, which provides the bound
\centerline {$ | |E(\mathbb{F}_q)| - q - 1 | \leq 2 \sqrt{q} $}
\spa
Computing the LHS above reduces to computing the characteristic polynomial of the Frobenius endomorphism
\spa
\red{Goal: Translate this to the rank-2 Drinfeld Module setting}
\end{frame}
%-------------------------------------
%-------------------------------------
%--------------------------------------------------
\begin{frame}
\frametitle{Point Counting}
\begin{theorem}[Gekeler, 1991]
Let $\varphi$ be a rank-2 Drinfeld Module, and let $\tau = X^n$. Then there is a polynomial, the \textbf{characteristic polynomial} of $\varphi$, $Y^2 - \red{a}Y +\blue{b} \in \mathbb{F}_q[Y]$ such that
\[\tau^2 -\varphi_{\red{a}}\tau + \varphi_{\blue{b}} = 0\]
in $\mathbb{L}[X,\sigma]$
\end{theorem}
\spa
%\item The \textit{Characteristic Polynomial} of $\phi$
$\red{a}$ is the \red{\textit{Frobenius Trace}}
\spa
$\blue{b}$ the \blue{\textit{Frobenius Norm}}
\spa
Setting coefficients to zero induces the degree constraints $\deg(\red{a}) \leq \frac{n}{2}$, $\deg(\blue{b}) \leq n$
\end{frame}
\begin{frame}
\frametitle{Main Problem}
\begin{problem}
Given a rank-2 Drinfeld module $\varphi = (g,\Delta)$, compute its Frobenius trace and norm.
\end{problem}
\spa
Computing the Frobenius norm is relatively straightforward \blue{[Gekeler, 1991]}
\spa
Computing the Frobenius trace turns out to be much harder
\end{frame}
%-------------------------------------------------
%\begin{frame}{}
% \begin{example}
%$\f = \f_2$, $L = \f_{16}$, $\gamma = \textnormal{quotient by } T^2 + T + 1$, $\phi = (1,1)$
%\[b = T^4 + T^2 + 1\]
%\[a = T^2 + T\]
%\[\phi_{T}^2 = X^4 + (T^2 + T)X + T^2\]
%\[\phi_T^4 = X^8 + X^2 + T + 1\]
%\[X^8 + \phi_aX^4 + \phi_b\]
%\[X^8 - (X^4 + X^2 + (T^2 + T + 1)X + T^2 + T)X^4 + X^8 + X^4 + X^2 (T^2 + T)X + T^2 + T + 1
%\]
%\end{example}
%\end{frame}
%-----------------------------------------------
\begin{frame}
\frametitle{Main Result}
\begin{theorem}
In a RAM model counting bit operations, one can compute the Frobenius trace of a rank 2 Drinfeld module
\begin{enumerate}
\item in Monte Carlo time $\blue{O\tilde{~}(n^2 \log^2 q)}$
\item in deterministic time $\blue{(n^2 \log q + n \log^2 q)^{1+o(1)}}$
\end{enumerate}
\end{theorem}
\end{frame}
%--------------------
%------------------
\begin{frame}
\frametitle{Known Results}
Polynomial multiplication of degree at most $n$: $\blue{(n\log q)^{1 + o(1)}}$
\spa
Modular composition: Compute $F(G) \mod H$ given single variable polynomials $\deg F, G,H \leq n$
\begin{itemize}
\item Brent-Kung: $\blue{(n^{(\omega+1)/2}
\log q)^{1+o(1)}}$
\item Kedlaya-Umans: $\blue{(n^{1 + \varepsilon}
\log q)^{1+o(1)}}$
\item Lecerf-van der Hoeven: $\blue{(n
\log q)^{1+o(1)}}$
\end{itemize}
%\spa
%Degree at most $d$ skew polynomial multiplication: $\blue{(d^{(\omega+1)/2} n\log q)^{1+o(1)}}$
\spa
Compute the Frobenius map via fast exponentiation: $\blue{(n\log^2 q)^{1 + o(1)}}$
\end{frame}
%-----------------
\begin{frame}
\frametitle{Previous Techniques}
Gekeler gives a straightforward approach \blue{[Gekeler, 2008]}
\spa
Set $\varphi_{T^i} = \sum_{j=0}^{2i}f_{i,j} X^j$, $f_{i,j} \in L$ and recall $\tau = X^n$ and the characteristic equation $\tau^2 - \varphi_a\tau + \varphi_b = 0$
\spa
We can write $\varphi_a$ as a linear combination of the $\varphi_{T^i}$
\spa
Construct a triangular system for the coefficients of $a$ in terms of $f_{i,j}$ and compute $f_{i,j}$ using a recurrence
\spa
Overall runtime: $\blue{(n^3 \log q + n\log^2 q)^{1 + o(1)}}$
\end{frame}
%-----------------------------------------------
%-----------------------------------------------
%-------------------------------------------------
\begin{frame}{Previous Techniques}
Analogously to elliptic curves, a faster algorithm based on the Hasse invariant exists when $\gamma$ is surjective. \blue{[Gekeler, 2008]}
\spa
Recall $\mathbb{L} = \mathbb{F}_q[T]/f$, $\deg(f) = n$
\begin{definition}
\item The \blue{\textit{Hasse Invariant}} $H_{\varphi}$ of a Drinfeld Module $\varphi$ is the coefficient of $X^n$ in $\varphi_f$
\end{definition}
\spa
Runtime of $\blue{(n^{3/2} \log q + n \log^2 q)^{1+o(1)}}$
%$\gamma(a)$ can be computed from $H_{\varphi}$ using
\end{frame}
%------------------------------------------------
\begin{frame}{Previous Techniques}
Narayanan gave a randomized algorithm when $q$ is odd and CharPoly$(\varphi_T) = $ MinPoly$(\varphi_T)$ \blue{[Narayanan,2018]}
\spa
Based on the automorphism projection algorithm of \blue{[Kaltofen and Shoup, 1998]}
\spa
Runs in Monte Carlo time $\blue{(n^{1.885} \log q + n \log^2 q)^{1+o(1)}}$,
if $ \deg \textnormal{MinPoly}(\varphi_T) = n$
\end{frame}
%------------------------------------------------
\begin{frame}{A Randomized Algorithm}
Inspired by Shoup's algorithm for constructing irreducible polynomials \blue{[Shoup, 1994]}
\spa
\item Recall that $\tau^2 + \varphi_b = \varphi_a \tau$
\item Choose a random element $\alpha \in \mathbb{L}$ and projection $\ell : \mathbb{L} \to \f_q$
\item Recall the operator identification $X \mapsto \sigma$, $\tau \mapsto \sigma^n$
\item Set
\item \centerline{$r := \alpha + \varphi_b(\alpha) = \varphi_a(\alpha)$}
\item \centerline{$a := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor}a_iT^i$}
\item For $j \geq 0$: $\ell(\varphi_T^j(r)) = \sum_{i = 0}^{\left\lfloor{\frac{n}{2}} \right\rfloor}a_i\ell(\varphi_T^{i+j}(\alpha))$
\end{frame}
\begin{frame}{A Randomized Algorithm}
\item For a choice of $\kappa$, we can construct a Hankel system
\[ \begin{bmatrix}\ell(\alpha) & \ell(\varphi_T(\alpha)) & \ldots & \ell(\varphi_T^{\left\lfloor n/2 \right\rfloor}(\alpha)) \\ \vdots & \vdots & & \vdots \\
\ell(\varphi_T^{j}(\alpha)) & \ell(\varphi_T^{1+j}(\alpha)) & \ldots & \ell(\varphi_T^{\left\lfloor n/2 \right\rfloor+j}(\alpha)) \\ \vdots & \vdots & & \vdots \\
\ell(\varphi_T^{\kappa}(\alpha)) & \ell(\varphi_T^{1 + \kappa }(\alpha)) & \ldots & \ell(\varphi_T^{\left\lfloor n/2 \right\rfloor + \kappa}(\alpha))
\end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_i \\ \vdots \\ a_{\left\lfloor n/2 \right\rfloor} \end{bmatrix} = \begin{bmatrix} \ell(r) \\ \ell(\varphi_T(r)) \\ \vdots \\ \ell(\varphi_T^j(r)) \\ \vdots \\ \ell(\varphi_T^{\kappa}(r)) \end{bmatrix} \]
\end{frame}
%------------------------------------------------
%-------------------------------------------------
\begin{frame}{A Randomized Algorithm}
\item With probability at least $(1 - \frac{n}{2q})^2$ we have that \item \centerline{$\minpol(\{\ell(\varphi_T^i(\alpha)\}_i) = \minpol(\varphi_T)$}
\item Given $\deg \minpol(\varphi_T) \leq n$ , we can take $\kappa = \deg \minpol(\varphi_T)$
%\item An upper left submatrix of size at least $\left\lfloor \frac{n}{2} \right\rfloor + 1$ is invertible in almost all cases, guaranteeing a unique solution.
\item Takes $O(n^2 \log q)$ $\f_q$ operations to compute all entries of the Hankel matrix and $O(n)$ to solve the Hankel System
\item Overall bit complexity: $\blue{O\tilde{~}(n^2 \log^2 q)}$
% \item Overall bit complexity
\end{frame}
%-------------------------------------------------
\begin{frame}{A Deterministic Algorithm}
\item Inspired by Schoof's algorithm for elliptic curves
\item The Drinfeld case turns out to be much simpler: it's sufficient to exploit the ring-homomorphic properties of $\varphi$
\item We begin with the assumption $ \frac{n}{2} + 1 < q$ and pick a set $\{e_0, \ldots e_{\frac{n}{2}}\} \subset \mathbb{F}$
\item The characteristic equation applied to each $e_i$:
\centerline{$a(e_i) X^n = X^{2n} + b(e_i) \mod \varphi_{T} - e_i $}
\item To compute $a$, we find each $a(e_i)$ and interpolate
\item \red{To solve for $a(e_i)$, we want to compute $X^n \mod \varphi_{T} - e_i$}
\end{frame}
%-------------------------------------------------
\begin{frame}{A Deterministic Algorithm}
\item \red{Goal: compute $X^n \mod \varphi_{T} - e_i$}
\item Recall: $\varphi_T = \gamma(T) + gX + \Delta X^2$
\item Define $X^j \mod \varphi_{T} - e_i := \nu_j + \mu_j X $ with $\nu_j, \mu_j \in \mathbb{L}$
%\item $\phi_T - e_i = \gamma_T - e_i + gX + \Delta X^2$
%\item
%\item We obtain the recurrences $\nu_{j+1} = -\frac{\gamma_x - e_i}{\Delta}\mu_{j}^q$ and $\mu_{j + 1} = \nu_j^q - \frac{g}{\Delta} \mu_j^q$
\item Set $\alpha := -\frac{\gamma(T) - e_i}{\Delta}$, $\beta := - \frac{g}{\Delta}$, $M^{(q^j)} := \begin{bmatrix} 0 & \alpha^{q^j} \\ 1 & \beta^{q^j} \end{bmatrix}$
\item Simple recurrence gives $\begin{bmatrix} \nu_{n} \\ \mu_n \end{bmatrix} = M M^{(q)} \ldots M^{(q^{n-1})} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
\item Modular composition and a recursive procedure computes the expression
\end{frame}
%------------------------------------------------
\begin{frame}{A Deterministic Algorithm}
\item Having determined $\nu_n, \mu_n$, we can use the characteristic equation to compute $a(e_i)$
\item If $\mu_n \neq 0$, $a(e_i) = \nu_n + \nu_n^q + \mu_n^q \beta$, otherwise $a(e_i) = \nu_n + b(e_i)$
\item Overall runtime is $\blue{(n^2 \log q + n \log^2 q)^{1+o(1)}}$ bit operations
\item This approach can be extended to the cases where $\frac{n}{2} + 1 \geq q$ by using $\varphi_{g}$ for irreducible $g$
\end{frame}
%-------------------------------------------------
%-------------------------------------------------
%\begin{frame}
%\begin{example}
%Let $q = 5$, $n = 4$, $L = \mathbb{F}_5[T]/(T^4 + 4T^2 + 4T + 2)$, $\phi = (1,1)$. Then for $e_0 = 0$ we have $\alpha = 4t$, $\beta = 4$. Letting
%\[M = \begin{bmatrix}0 & 4T \\ 1 & 4 \end{bmatrix}\]
%We get:
%\[M M^{(5)} M^{(25)} M^{(125)} = \begin{bmatrix} T^3 + T^2 + 3 & T^3 + 2T + 3 \\ 2T^3 + 2T^2 + 3T + 4 & 4T^3 + 4T^2 + 4 \end{bmatrix}\]
%So $\nu_4 = T^3 + T^2 + 3$ and $\mu_4 = 2T^3 + 2T^2 + 3T + 4$ and
%\[a(0) = \nu_4 + \nu_4^5 + 4\mu_4^5 = 2\]
%\end{example}
%\end{frame}
%\begin{frame}
%\begin{example}
%Repeating for $e_1 = 1$, $e_2 = 2$ we get $a(1) = 3$ and $a(2) = 3$. We interpolate to get
%\[a = (T-1)(T-2) + 2T(T-2) + 4T(T-1) = 2T^2 + 4T + 2.\]
%\end{example}
%\end{frame}
%--------------------------------------------------
\begin{frame}{Conclusion}
\begin{table}[]
\begin{tabular}{|c|c|c|}
\hline
Algorithm & Runtime & Conditions \\ \hline
Gekeler & $(n^{3}\log
q + n \log^2 q)^{1+o(1)}$ & None \\
Narayanan & $(n^{1.885} \log q + n \log^2 q)^{1+o(1)}$ & \thead{ {\footnotesize CharPoly$(\varphi_T) = $ MinPoly$(\varphi_T)$ } \\ {\footnotesize $q$ odd } } \\
Hasse & $(n^{3/2} \log q + n \log^2 q)^{1+o(1)}$ & $\gamma$ surjective \\
Randomized & $O\tilde{~}(n^2 \log^2 q)$ & None \\
Deterministic & $(n^2 \log q + n \log^2 q)^{1+o(1)}$ & None \\ \hline
\end{tabular}
\end{table}
\end{frame}
%-----------------------------------------
%\begin{frame}{Conclusion}
%\begin{table}[]
%\begin{tabular}{|c|c|}
%\hline
%Algorithm & Runtime \\ \hline
%Gekeler & $(n^{\theta+2}\log
% q + n \log^2 q)^{1+o(1)}$ \\
%Narayanan & $(n^{1.885} \log q + n \log^2 q)^{1+o(1)}$ \\
%Hasse & $(n^{\theta+1/2} \log q + n \log^2 q)^{1+o(1)}$ \\
%Randomized & $O\tilde{~}(n^2 \log^2 q)$ \\
%Deterministic & $(n^2 \log q + n \log^2 q)^{1+o(1)} \\ \hline
%\end{tabular}
%\end{table}
%\end{frame}
%-------------------------------------------
\begin{frame}{Experimental Results}
\begin{figure}[h!]\label{fig:ntest499}
\centering
\includegraphics[width=3in]{chart-499-2.png}
\caption{Log-log plot of $n$ versus runtime with $q = 499$, $m = 2$}
\end{figure}
\end{frame}
%--------------------------------------------------
%\begin{frame}
%\frametitle{References}
%\footnotesize{
%\begin{thebibliography}{99} % Beamer does not support BibTeX so references must be inserted manually as below
%\bibitem[Smith, 2012]{p1} M.B. Paterson, D.R. Stinson (2015)
%\newblock Combinatorial Characterizations of algebraic manipulation detection codes involving generalized difference families
%\end{thebibliography}
%}
%\end{frame}
%------------------------------------------------
%\begin{frame}
%\Huge{\centerline{Fin}}
%\end{frame}
%----------------------------------------------------------------------------------------
\end{document}