-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cls.py
89 lines (80 loc) · 4.28 KB
/
test_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import numpy as np
import torch
import random
import sys
sys.path.append('models')
sys.path.append('my_dataloader')
from qec_net import QecNet
import modelnet_with_lrf_sample_index_loader
import matplotlib.pyplot as plt
def main():
USE_CUDA = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
opt.manualSeed = random.randint(1, 10000) # fix seed
# opt.manualSeed =9999 # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
dataset = modelnet_with_lrf_sample_index_loader.ModelNetDataset(root=opt.data_path, npoints=opt.num_points,
split='test', num_of_class=opt.num_of_class,
class_choice=opt.class_choice,
num_gen_samples=opt.num_gen_samples, data_aug=opt.data_aug,
point_shift=False,rand_seed=opt.manualSeed)
loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=4)
qec_net = QecNet(opt.num_points, opt.inter_out_channels, opt.num_of_class, opt.num_iterations)
if opt.model != '':
qec_net.load_state_dict(torch.load(opt.model))
if USE_CUDA:
qec_net.to(device)
qec_net.eval()
eq_sum=0
batch_id=0
cat_results=torch.zeros(2,opt.num_of_class)
cat_results2=torch.zeros(opt.num_of_class,opt.num_of_class)
for points_pool1, lrfs_pool1, activation_pool1, points_pool2_index, _,target in loader:
if(points_pool1.dim()<4):
points_pool1, lrfs_pool1, activation_pool1, points_pool2_index, target=points_pool1.unsqueeze(0), lrfs_pool1.unsqueeze(0), activation_pool1.unsqueeze(0), points_pool2_index.unsqueeze(0), target.unsqueeze(0)
cur_bs=target.size(0)
target=target.squeeze(-1).squeeze(-1)
points_pool1, lrfs_pool1, activation_pool1,points_pool2_index =points_pool1.cuda(), lrfs_pool1.cuda(), activation_pool1.cuda(), points_pool2_index.cuda()
pose_out, a_out= qec_net(points_pool1, lrfs_pool1, activation_pool1, points_pool2_index)
if(pose_out.dim()<3):
pose_out, a_out=pose_out.unsqueeze(0), a_out.unsqueeze(0)
a_pred = a_out.max(1)[1]
for i in range(cur_bs):
cat_results[0,target[i]]+=1
if(target[i]==a_pred[i].data.cpu()):
cat_results[1,target[i]]+=1
# else:
# print('pred of file with index of %d with label %s is %s : ' % (batch_id*(opt.batch_size)+i , cat_no[target[i]], cat_no[a_pred[i].data.cpu()] ) )
cat_results2[target[i],a_pred[i]]+=1
batch_id+=1
for i in range(opt.num_of_class) :
cat_results2[i]=cat_results2[i]/cat_results[0,i]
plt.figure()
plt.imshow(cat_results2)
plt.colorbar()
plt.show()
print('result is : ' , cat_results[1].sum()/cat_results[0].sum() )
cat_results[1]=cat_results[1]/cat_results[0]
print(cat_results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
parser.add_argument('--num_points', type=int, default=2048, help='input batch size')
parser.add_argument('--model', type=str, default='checkpoints/tmp_4.pth', help='model path')
parser.add_argument('--num_of_class', type=int, default=10, help='num_of_class')
parser.add_argument('--class_choice', type=str, default=None, help='chosse one cat')
parser.add_argument('--data_path', type=str, default='/home/zhao/dataset/modelnet40_normal_resampled/', help='dataset path')
parser.add_argument('--num_gen_samples', type=int, default=5, help='num_gen_samples')
parser.add_argument('--data_aug', type=bool, default=False, help='If rotate the shape')
parser.add_argument('--inter_out_channels', type=int, default=128, help='inter_out_channels')
parser.add_argument('--num_iterations', type=int, default=3, help='num_iterations')
opt = parser.parse_args()
print(opt)
main()