forked from bigbio/quantms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nextflow_schema.json
1528 lines (1527 loc) · 89.1 KB
/
nextflow_schema.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"$schema": "http://json-schema.org/draft-07/schema",
"$id": "https://raw.githubusercontent.com/nf-core/quantms/master/nextflow_schema.json",
"title": "nf-core/quantms pipeline parameters",
"description": "Quantitative Mass Spectrometry nf-core workflow",
"type": "object",
"definitions": {
"input_output_options": {
"title": "Input/output options",
"type": "object",
"fa_icon": "fas fa-terminal",
"description": "Define where the pipeline should find input data and save output data.",
"required": ["input", "outdir"],
"properties": {
"input": {
"type": "string",
"format": "file-path",
"exists": true,
"mimetype": "text/tsv",
"pattern": "^\\S+\\.(?:tsv|sdrf)$",
"description": "URI/path to an [SDRF](https://github.com/bigbio/proteomics-metadata-standard/tree/master/annotated-projects) file (.sdrf.tsv) **OR** [OpenMS-style experimental design](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/release/latest/html/classOpenMS_1_1ExperimentalDesign.html#details) with paths to spectra files (.tsv)",
"help_text": "Input is specified by using a path or URI to a PRIDE Sample to Data Relation Format file (SDRF), e.g. as part of a submitted and\nannotated PRIDE experiment (see [here](https://github.com/bigbio/proteomics-metadata-standard/tree/master/annotated-projects) for examples). Input files will be downloaded and cached from the URIs specified in the SDRF file.\nAn OpenMS-style experimental design will be generated based on the factor columns of the SDRF. The settings for the\nfollowing parameters will currently be overwritten by the ones specified in the SDRF:\n\n * `fixed_mods`,\n * `variable_mods`,\n * `precursor_mass_tolerance`,\n * `precursor_mass_tolerance_unit`,\n * `fragment_mass_tolerance`,\n * `fragment_mass_tolerance_unit`,\n * `fragment_method`,\n * `enzyme`\n You can also specify an [OpenMS-style experimental design](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/release/latest/html/classOpenMS_1_1ExperimentalDesign.html#details) directly (.tsv ending). In this case, the aforementioned parameters have to be specified or defaults will be used.",
"fa_icon": "fas fa-file-csv"
},
"outdir": {
"type": "string",
"description": "The output directory where the results will be saved.",
"default": "./results",
"fa_icon": "fas fa-folder-open"
},
"email": {
"type": "string",
"description": "Email address for completion summary.",
"fa_icon": "fas fa-envelope",
"help_text": "Set this parameter to your e-mail address to get a summary e-mail with details of the run sent to you when the workflow exits. If set in your user config file (`~/.nextflow/config`) then you don't need to specify this on the command line for every run.",
"pattern": "^([a-zA-Z0-9_\\-\\.]+)@([a-zA-Z0-9_\\-\\.]+)\\.([a-zA-Z]{2,5})$"
},
"multiqc_title": {
"type": "string",
"description": "MultiQC report title. Printed as page header, used for filename if not otherwise specified.",
"fa_icon": "fas fa-file-signature"
},
"root_folder": {
"type": "string",
"description": "Root folder in which the spectrum files specified in the SDRF/design are searched",
"fa_icon": "fas fa-folder",
"help_text": "This optional parameter can be used to specify a root folder in which the spectrum files specified in the SDRF/design are searched.\nIt is usually used if you have a local version of the experiment already. Note that this option does not support recursive\nsearching yet."
},
"local_input_type": {
"type": "string",
"description": "Overwrite the file type/extension of the filename as specified in the SDRF/design",
"fa_icon": "fas fa-file-invoice",
"default": "mzML",
"help_text": "If the above [`--root_folder`](#root_folder) was given to load local input files, this overwrites the file type/extension of\nthe filename as specified in the SDRF/design. Usually used in case you have an mzML-converted version of the files already. Needs to be\none of 'mzML' or 'raw' (the letter cases should match your files exactly)."
},
"acquisition_method": {
"type": "string",
"description": "Proteomics data acquisition method",
"enum": ["dda", "dia"],
"fa_icon": "far fa-list-ol"
},
"id_only": {
"type": "boolean",
"description": "Only perform identification subworkflow.",
"fa_icon": "far fa-check-square",
"help_text": "Only perform identification subworkflow for specific cases."
},
"export_decoy_psm": {
"type": "boolean",
"description": "Whether export PSM from decoy in final identification results",
"fa_icon": "far fa-check-square",
"help_text": "Whether export PSM from decoy in final identification results for dda_id subworkflow for specific cases."
}
}
},
"sdrf_validation": {
"title": "SDRF validation",
"type": "object",
"description": "Settings for validating the input SDRF file.",
"default": "",
"properties": {
"validate_ontologies": {
"type": "boolean",
"description": "Check that ontology terms in an input SDRF file exist.",
"fa_icon": "far fa-check-square",
"help_text": "If false, only a basic readability check is performed on an input SDRF file. This option is useful when ontology providers are inaccessible."
},
"skip_ms_validation": {
"type": "boolean",
"description": "Skip validation of mass spectrometry files.",
"fa_icon": "far fa-check-square",
"help_text": "Skip validation of mass spectrometry metadata, including PTMs, tolerances or enzymes. Only useful if your metadata is correct but the terms are not in ontologies."
},
"skip_factor_validation": {
"type": "boolean",
"description": "Skip validation of factor columns.",
"fa_icon": "far fa-check-square",
"help_text": "Skip validation of factor columns in the SDRF. Only useful if your factor values are correct but the sdrf-validation library does not recognize them."
},
"skip_experimental_design_validation": {
"type": "boolean",
"description": "Skip validation of experimental design.",
"fa_icon": "far fa-check-square",
"help_text": "Skip validation of experimental design in the SDRF. Only useful if your experimental design is correct but the sdrf-validation library does not recognize it."
},
"use_ols_cache_only": {
"type": "boolean",
"description": "Use cached version of the Ontology Lookup Service (OLS).",
"fa_icon": "far fa-check-square",
"help_text": "Use only the cached version of the Ontology Lookup Service (OLS) for ontology term validation. This is useful if you don't want the pipeline to query internet services."
}
}
},
"protein_database": {
"title": "Protein database",
"type": "object",
"description": "Settings that relate to the mandatory protein database and the optional generation of decoy entries. Note: Decoys for DIA will be created internally.",
"default": "",
"properties": {
"database": {
"type": "string",
"format": "file-path",
"exists": true,
"mimetype": "text/fasta",
"pattern": "^\\S+\\.(?:fasta|fa)$",
"description": "The `fasta` protein database used during database search. *Note:* For DIA data, it must not contain decoys.",
"fa_icon": "fas fa-file",
"help_text": "Since the database is not included in an SDRF, this parameter always needs to be given to specify the input protein database\nwhen you run the pipeline. Remember to include contaminants (and decoys if not in DIA mode and if not added in the pipeline with [`--add_decoys`](#add_decoys))\n\n```bash\n--database '[path to fasta protein database]'\n```"
},
"add_decoys": {
"type": "boolean",
"description": "Generate and append decoys to the given protein database",
"fa_icon": "fas fa-coins",
"help_text": "If decoys were not yet included in the input database, they have to be appended by OpenMS DecoyGenerator by adding this flag (TODO allow specifying generator type).\nDefault: pseudo-reverse peptides"
},
"decoy_string": {
"type": "string",
"description": "Pre- or suffix of decoy proteins in their accession",
"default": "DECOY_",
"fa_icon": "fas fa-font",
"help_text": "If [`--add-decoys`](#add_decoys) was set, this setting is used during generation and passed to all tools that need decoy information.\n If decoys were appended to the database externally, this setting needs to match the used affix. (While OpenMS tools can infer the affix automatically, some thirdparty tools might not.)\nTypical values are 'rev', 'decoy', 'dec'. Look for them in your database."
},
"decoy_string_position": {
"type": "string",
"description": "Location of the decoy marker string in the `fasta` accession. Before (prefix) or after (suffix)",
"default": "prefix",
"fa_icon": "fas fa-list-ol",
"help_text": "Prefix is highly recommended. Only in case an external tool marked decoys with a suffix, e.g. `sp|Q12345|ProteinA_DECOY` change this parameter to suffix."
},
"decoy_method": {
"type": "string",
"description": "Choose the method to produce decoys from input target database.",
"default": "reverse",
"fa_icon": "fas fa-list-ol",
"enum": ["reverse", "shuffle"]
},
"shuffle_max_attempts": {
"type": "integer",
"description": "Maximum nr. of attempts to lower the amino acid sequence identity between target and decoy for the shuffle algorithm",
"default": 30,
"fa_icon": "fas fa-sliders-h"
},
"shuffle_sequence_identity_threshold": {
"type": "number",
"description": "Target-decoy amino acid sequence identity threshold for the shuffle algorithm. if the sequence identity is above this threshold, shuffling is repeated. In case of repeated failure, individual amino acids are 'mutated' to produce a difference amino acid sequence.",
"default": 0.5,
"fa_icon": "fas fa-sliders-h"
},
"decoydatabase_debug": {
"type": "integer",
"description": "Debug level for DecoyDatabase step. Increase for verbose logging.",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "fas fa-database",
"required": ["database"]
},
"spectrum_preprocessing": {
"title": "Spectrum preprocessing",
"type": "object",
"description": "In case you start from profile mode mzMLs or the internal preprocessing during conversion with the ThermoRawFileParser fails (e.g. due to new instrument types), preprocessing has to be performed with OpenMS. Use this section to configure.",
"default": "",
"properties": {
"openms_peakpicking": {
"type": "boolean",
"description": "Activate OpenMS-internal peak picking",
"fa_icon": "far fa-check-square",
"help_text": "Activate OpenMS-internal peak picking with the tool PeakPickerHiRes. Skips already picked spectra."
},
"peakpicking_inmemory": {
"type": "boolean",
"description": "Perform peakpicking in memory",
"fa_icon": "far fa-check-square",
"help_text": "Perform peakpicking in memory. Use only if problems occur."
},
"peakpicking_ms_levels": {
"type": "string",
"description": "Which MS levels to pick as comma separated list. Leave empty for auto-detection.",
"fa_icon": "fas fa-font",
"help_text": "Which MS levels to pick as comma separated list, e.g. `--peakpicking_ms_levels 1,2`. Leave empty for auto-detection."
},
"convert_dotd": {
"type": "boolean",
"description": "Convert bruker .d files to mzML",
"fa_icon": "far fa-check-square",
"help_text": "Whether to convert raw .d bruker files to .mzML"
},
"reindex_mzml": {
"type": "boolean",
"default": true,
"description": "Force initial re-indexing of input mzML files. Also fixes some common mistakes in slightly incomplete/outdated mzMLs. (Default: true for safety)",
"fa_icon": "far fa-check-square",
"help_text": "Force re-indexing in the beginning of the pipeline to make sure that indices are up-to-date and to avoid redundant indexing on-demand in steps that require an index (e.g., Comet)."
}
},
"fa_icon": "far fa-chart-bar"
},
"database_search": {
"title": "Database search",
"type": "object",
"description": "",
"default": "",
"properties": {
"search_engines": {
"type": "string",
"description": "A comma separated list of search engines to use (and combine). Valid: comet, msgf, sage",
"default": "comet",
"fa_icon": "fas fa-tasks",
"help_text": "A comma-separated list of search engines to run in parallel on each mzML file. Currently supported: comet, msgf and sage (default: comet)\nIf more than one search engine is given, results are combined based on posterior error probabilities (see the different types\nof estimation procedures under [`--posterior_probabilities`](#posterior_probabilities)). Combination is done with\n[ConsensusID](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/release/latest/html/TOPP_ConsensusID.html).\nSee also its corresponding [`--consensusid_algorithm`](#--consensusid_algorithm) parameter for different combination strategies.\nCombinations may profit from an increased [`--num_hits`](#--num_hits) parameter."
},
"sage_processes": {
"type": "integer",
"description": "Number of sage processes to be spawned.",
"default": 1,
"fa_icon": "fas fa-sliders-h",
"help_text": "Since sage's runtime benefits from building an index only once per database and processing files in parallel, you can choose the number of sage processes to be spawned here. Input mzMLs will be distributed equally among them in arbitrary order."
},
"enzyme": {
"type": "string",
"description": "The enzyme to be used for in-silico digestion, in 'OpenMS format'",
"default": "Trypsin",
"fa_icon": "fas fa-list-ol",
"help_text": "Specify which enzymatic restriction should be applied, e.g. 'unspecific cleavage', 'Trypsin' (default), see OpenMS\n[enzymes](https://github.com/OpenMS/OpenMS/blob/develop/share/OpenMS/CHEMISTRY/Enzymes.xml). Note: MSGF does not support extended\ncutting rules, as used by default with `Trypsin`. I.e. if you specify `Trypsin` with MSGF, it will be automatically converted to\n`Trypsin/P`= 'Trypsin without proline rule'."
},
"num_enzyme_termini": {
"type": "string",
"description": "Specify the amount of termini matching the enzyme cutting rules for a peptide to be considered. Valid values are `fully` (default), `semi`, or `none`",
"help_text": "Warning: not supported by sage yet.",
"default": "fully",
"fa_icon": "fas fa-list-ol",
"enum": ["fully", "semi", "none"]
},
"allowed_missed_cleavages": {
"type": "integer",
"description": "Specify the maximum number of allowed missed enzyme cleavages in a peptide. The parameter is not applied if `unspecific cleavage` is specified as enzyme.",
"default": 2,
"fa_icon": "fas fa-sliders-h"
},
"precursor_mass_tolerance": {
"type": "integer",
"description": "Precursor mass tolerance used for database search. For High-Resolution instruments a precursor mass tolerance value of 5 ppm is recommended (i.e. 5). See also [`--precursor_mass_tolerance_unit`](#precursor_mass_tolerance_unit).",
"default": 5,
"fa_icon": "fas fa-sliders-h"
},
"precursor_mass_tolerance_unit": {
"type": "string",
"description": "Precursor mass tolerance unit used for database search. Possible values are 'ppm' (default) and 'Da'.",
"default": "ppm",
"fa_icon": "fas fa-sliders-h",
"enum": ["Da", "ppm"]
},
"fragment_mass_tolerance": {
"type": "number",
"description": "Fragment mass tolerance used for database search. The default of 0.03 Da is for high-resolution instruments.",
"default": 0.03,
"fa_icon": "fas fa-sliders-h",
"help_text": "Caution: for Comet we are estimating the `fragment_bin_tolerance` parameter based on this automatically."
},
"fragment_mass_tolerance_unit": {
"type": "string",
"description": "Fragment mass tolerance unit used for database search. Possible values are 'ppm' (default) and 'Da'.",
"default": "Da",
"fa_icon": "fas fa-list-ol",
"help_text": "Caution: for Comet we are estimating the `fragment_bin_tolerance` parameter based on this automatically.",
"enum": ["Da", "ppm"]
},
"fixed_mods": {
"type": "string",
"description": "A comma-separated list of fixed modifications with their Unimod name to be searched during database search",
"default": "Carbamidomethyl (C)",
"fa_icon": "fas fa-tasks",
"help_text": "Specify which fixed modifications should be applied to the database search (eg. '' or 'Carbamidomethyl (C)', see Unimod modifications\nin the style '({unimod name} ({optional term specificity} {optional origin})').\nAll possible modifications can be found in the restrictions mentioned in the command line documentation of e.g. [CometAdapter](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/release/latest/html/TOPP_CometAdapter.html) (scroll down a bit for the complete set).\nMultiple fixed modifications can be specified comma separated (e.g. 'Carbamidomethyl (C),Oxidation (M)').\nFixed modifications need to be found at every matching amino acid for a peptide to be reported."
},
"variable_mods": {
"type": "string",
"description": "A comma-separated list of variable modifications with their Unimod name to be searched during database search",
"default": "Oxidation (M)",
"fa_icon": "fas fa-tasks",
"help_text": "Specify which variable modifications should be applied to the database search (eg. '' or 'Oxidation (M)', see Unimod modifications\nin the style '({unimod name} ({optional term specificity} {optional origin})').\nAll possible modifications can be found in the restrictions mentioned in the command line documentation of e.g. [CometAdapter](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/release/latest/html/TOPP_CometAdapter.html) (scroll down a bit for the complete set).\nMultiple variable modifications can be specified comma separated (e.g. 'Carbamidomethyl (C),Oxidation (M)').\nVariable modifications may or may not be found at matching amino acids for a peptide to be reported."
},
"fragment_method": {
"type": "string",
"description": "The fragmentation method used during tandem MS. (MS/MS or MS2).",
"default": "HCD",
"fa_icon": "fas fa-list-ol",
"help_text": "Currently unsupported. Defaults to `ALL` for Comet and `from_spectrum`, for MSGF. Should be a sensible default for 99% of the cases.",
"hidden": true
},
"isotope_error_range": {
"type": "string",
"description": "Comma-separated range of integers with allowed isotope peak errors for precursor tolerance (like MS-GF+ parameter '-ti'). E.g. -1,3",
"default": "0,1",
"fa_icon": "fas fa-tasks",
"help_text": "Range of integers with allowed isotope peak errors (like MS-GF+ parameter '-ti'). Takes into account the error introduced by choosing a non-monoisotopic peak for fragmentation. Combined with 'precursor_mass_tolerance'/'precursor_error_units', this determines the actual precursor mass tolerance. E.g. for experimental mass 'exp' and calculated mass 'calc', '-precursor_mass_tolerance 20 -precursor_error_units ppm -isotope_error_range -1,2' tests '|exp - calc - n * 1.00335 Da| < 20 ppm' for n = -1, 0, 1, 2."
},
"instrument": {
"type": "string",
"description": "Type of instrument that generated the data. 'low_res' or 'high_res' (default; refers to LCQ and LTQ instruments)",
"fa_icon": "fas fa-list-ol"
},
"protocol": {
"type": "string",
"description": "MSGF only: Labeling or enrichment protocol used, if any. Default: automatic",
"default": "automatic",
"fa_icon": "fas fa-list-ol"
},
"min_precursor_charge": {
"type": "integer",
"description": "Minimum precursor ion charge. Omit the '+'",
"default": 2,
"fa_icon": "fas fa-sliders-h"
},
"max_precursor_charge": {
"type": "integer",
"description": "Maximum precursor ion charge. Omit the '+'",
"default": 4,
"fa_icon": "fas fa-sliders-h"
},
"min_peptide_length": {
"type": "integer",
"description": "Minimum peptide length to consider (works with MSGF and in newer Comet versions)",
"default": 6,
"fa_icon": "fas fa-sliders-h"
},
"max_peptide_length": {
"type": "integer",
"description": "Maximum peptide length to consider (works with MSGF and in newer Comet versions)",
"default": 40,
"fa_icon": "fas fa-sliders-h"
},
"num_hits": {
"type": "integer",
"description": "Specify the maximum number of top peptide candidates per spectrum to be reported by the search engine. Default: 1",
"default": 1,
"fa_icon": "fas fa-sliders-h"
},
"max_mods": {
"type": "integer",
"description": "Maximum number of modifications per peptide. If this value is large, the search may take very long.",
"default": 3,
"fa_icon": "fas fa-sliders-h"
},
"min_peaks": {
"type": "integer",
"description": "Minimum number of peaks in the spectrum to be considered for the search engine. Default: 10",
"default": 10,
"fa_icon": "fas fa-sliders-h"
},
"min_pr_mz": {
"type": "number",
"description": "The minimum precursor m/z for the in silico library generation or library-free search",
"fa_icon": "fas fa-filter"
},
"max_pr_mz": {
"type": "number",
"description": "The maximum precursor m/z for the in silico library generation or library-free search",
"fa_icon": "fas fa-filter"
},
"min_fr_mz": {
"type": "number",
"description": "The minimum fragment m/z for the in silico library generation or library-free search",
"fa_icon": "fas fa-filter"
},
"max_fr_mz": {
"type": "number",
"description": "The maximum fragment m/z for the in silico library generation or library-free search",
"fa_icon": "fas fa-filter"
},
"db_debug": {
"type": "integer",
"description": "Debug level when running the database search. Logs become more verbose and at '>5' temporary files are kept.",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "fas fa-search"
},
"modification_localization": {
"title": "Modification localization",
"type": "object",
"description": "Settings for calculating a localization probability with LucXor for modifications with multiple candidate amino acids in a peptide.",
"default": "",
"properties": {
"enable_mod_localization": {
"type": "boolean",
"description": "Turn the mechanism on.",
"fa_icon": "fas fa-toggle-on"
},
"mod_localization": {
"type": "string",
"description": "Which variable modifications to use for scoring their localization.",
"default": "Phospho (S),Phospho (T),Phospho (Y)",
"fa_icon": "fas fa-tasks"
},
"luciphor_neutral_losses": {
"type": "string",
"description": "List of neutral losses to consider for mod. localization.",
"fa_icon": "fas fa-font",
"help_text": "List the types of neutral losses that you want to consider. The residue field is case sensitive. For example: lower case 'sty' implies that the neutral loss can only occur if the specified modification is present.\nSyntax: 'NL = <RESDIUES> -<NEUTRAL_LOSS_MOLECULAR_FORMULA> <MASS_LOST>'\n(default: '[sty -H3PO4 -97.97690]')",
"hidden": true
},
"luciphor_decoy_mass": {
"type": "number",
"description": "How much to add to an amino acid to make it a decoy for mod. localization.",
"fa_icon": "fas fa-font",
"hidden": true
},
"luciphor_decoy_neutral_losses": {
"type": "string",
"description": "List of neutral losses to consider for mod. localization from an internally generated decoy sequence.",
"fa_icon": "fas fa-font",
"help_text": "For handling the neutral loss from a decoy sequence. The syntax for this is identical to that of the normal neutral losses given above except that the residue is always 'X'. Syntax: DECOY_NL = X -<NEUTRAL_LOSS_MOLECULAR_FORMULA> <MASS_LOST> (default: '[X -H3PO4 -97.97690]')",
"hidden": true
},
"luciphor_debug": {
"type": "integer",
"fa_icon": "fas fa-bug",
"description": "Debug level for Luciphor step. Increase for verbose logging and keeping temp files.",
"hidden": true
}
},
"fa_icon": "fas fa-search-location"
},
"peptide_re_indexing": {
"title": "Peptide re-indexing",
"type": "object",
"description": "",
"default": "",
"properties": {
"unmatched_action": {
"type": "string",
"description": "What to do when peptides are found that do not follow a unified set of rules (since search engines sometimes differ in their interpretation of them). ",
"default": "warn",
"fa_icon": "far fa-check-square",
"enum": ["warn", "error", "remove"]
},
"IL_equivalent": {
"type": "boolean",
"description": "Should isoleucine and leucine be treated interchangeably when mapping search engine hits to the database? Default: true",
"default": true,
"fa_icon": "far fa-check-square"
}
},
"fa_icon": "fas fa-project-diagram"
},
"psm_re_scoring_general": {
"title": "PSM re-scoring (general)",
"type": "object",
"description": "Choose between different rescoring/posterior probability calculation methods and set them up.",
"default": "",
"properties": {
"skip_rescoring": {
"type": "boolean",
"description": "Skip PSM rescoring steps for specific cases, such as studying pure search engine results and search engine ranks",
"default": false,
"fa_icon": "far fa-check-square"
},
"ms2rescore": {
"type": "boolean",
"description": "Whether performing peptide identification rescoring with LC-MS predictors such as MS²PIP and DeepLC.",
"default": false,
"fa_icon": "far fa-check-square"
},
"add_snr_feature_percolator": {
"type": "boolean",
"description": "Whether add signal-to-noise ratio features for identification rescoring in percolator",
"default": false,
"fa_icon": "far fa-check-square"
},
"rescore_range": {
"type": "string",
"description": "Rescoring for independent run, Sample or whole experiments",
"fa_icon": "fas fa-font",
"default": "independent_run",
"enum": ["independent_run", "by_sample", "by_project"]
},
"ms2pip_model": {
"type": "string",
"description": "Which deep learning model to generate feature.",
"fa_icon": "fas fa-font",
"default": "HCD2021"
},
"ms2pip_model_dir": {
"type": "string",
"description": "The path of ms2pip model files. Providing model file to avoid repeated download and slow internet connection",
"fa_icon": "fas fa-font"
},
"feature_generators": {
"type": "string",
"description": "Which feature generator to generate feature.",
"fa_icon": "fas fa-font",
"default": "deeplc,ms2pip"
},
"calibration_set_size": {
"type": "number",
"description": "Percentage of number of calibration set for DeepLC",
"default": 0.15,
"fa_icon": "fas fa-filter"
},
"posterior_probabilities": {
"type": "string",
"description": "How to calculate posterior probabilities for PSMs:\n\n* 'percolator' = Re-score based on PSM-feature-based SVM and transform distance\n to hyperplane for posteriors\n* 'fit_distributions' = Fit positive and negative distributions to scores\n (similar to PeptideProphet)\n\n* 'mokapot' = Re-score based on PSM-feature-based semi-supervised learning algorithm introduced by Percolator",
"fa_icon": "fas fa-list-ol",
"default": "percolator",
"enum": ["percolator", "fit_distributions", "mokapot"]
},
"run_fdr_cutoff": {
"type": "number",
"description": "FDR cutoff on PSM level (or peptide level; see Percolator options) *per run* before going into feature finding, map alignment and inference. This can be seen as a pre-filter. See ",
"default": 0.1,
"fa_icon": "fas fa-filter"
},
"extractpsmfeature_debug": {
"type": "integer",
"description": "Debug level when running the PSMFeatureExtractor step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"hidden": true,
"default": 0
},
"idfilter_debug": {
"type": "integer",
"description": "Debug level when running the IDFilter step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"hidden": true,
"default": 0
},
"pp_debug": {
"type": "integer",
"description": "Debug level when running the re-scoring. Logs become more verbose and at '>5' temporary files are kept.",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
},
"idscoreswitcher_debug": {
"type": "integer",
"description": "Debug level when running the re-scoring. Logs become more verbose and at '>5' temporary files are kept.",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "fas fa-star-half-alt"
},
"psm_re_scoring_percolator": {
"title": "PSM re-scoring (Percolator)",
"type": "object",
"description": "In the following you can find help for the Percolator specific options that are only used if [`--posterior_probabilities`](#posterior_probabilities) was set to 'percolator'.\nNote that there are currently some restrictions to the original options of Percolator:\n\n* no Percolator protein FDR possible (currently OpenMS' FDR is used on protein level)\n* no support for separate target and decoy databases (i.e. no min-max q-value calculation or target-decoy competition strategy)\n* no support for combined or experiment-wide peptide re-scoring. Currently search results per input file are submitted to Percolator independently.",
"default": "",
"properties": {
"fdr_level": {
"type": "string",
"description": "Calculate FDR on PSM ('psm_level_fdrs') or peptide level ('peptide_level_fdrs')?",
"default": "psm_level_fdrs",
"fa_icon": "fas fa-list-ol",
"enum": ["peptide_level_fdrs", "psm_level_fdrs"]
},
"train_FDR": {
"type": "number",
"description": "The FDR cutoff to be used during training of the SVM.",
"default": 0.05,
"fa_icon": "fas fa-sliders-h"
},
"test_FDR": {
"type": "number",
"description": "The FDR cutoff to be used during testing of the SVM.",
"default": 0.05,
"fa_icon": "fas fa-sliders-h"
},
"subset_max_train": {
"type": "integer",
"description": "Only train an SVM on a subset of PSMs, and use the resulting score vector to evaluate the other PSMs. Recommended when analyzing huge numbers (>1 million) of PSMs. When set to 0, all PSMs are used for training as normal. This is a runtime vs. quality tradeoff. Default: 300,000",
"default": 300000,
"fa_icon": "fas fa-sliders-h"
},
"klammer": {
"type": "boolean",
"description": "Retention time features are calculated as in Klammer et al. instead of with Elude. Default: false",
"fa_icon": "far fa-check-square",
"hidden": true
},
"description_correct_features": {
"type": "integer",
"description": "Use additional features whose values are learnt by correct entries. See help text. Default: 0 = none",
"fa_icon": "fas fa-list-ol",
"help_text": "Percolator provides the possibility to use so called description of correct features, i.e. features for which desirable values are learnt from the previously identified target PSMs. The absolute value of the difference between desired value and observed value is then used as predictive features.\n\n1 -> iso-electric point\n\n2 -> mass calibration\n\n4 -> retention time\n\n8 -> `delta_retention_time * delta_mass_calibration`"
},
"percolator_debug": {
"type": "integer",
"description": "Debug level for Percolator step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "fas fa-star-half"
},
"psm_re_scoring_distribution_fitting": {
"title": "PSM re-scoring (distribution fitting)",
"type": "object",
"description": "Use this instead of Percolator if there are problems with Percolator (e.g. due to bad separation) or for performance",
"default": "",
"properties": {
"outlier_handling": {
"type": "string",
"description": "How to handle outliers during fitting:\n\n* ignore_iqr_outliers (default): ignore outliers outside of `3*IQR` from Q1/Q3 for fitting\n* set_iqr_to_closest_valid: set IQR-based outliers to the last valid value for fitting\n* ignore_extreme_percentiles: ignore everything outside 99th and 1st percentile (also removes equal values like potential censored max values in XTandem)\n* none: do nothing",
"default": "none",
"fa_icon": "fas fa-list-ol",
"enum": ["none", "ignore_iqr_outliers", "set_iqr_to_closest_valid", "ignore_extreme_percentiles"]
},
"idpep_debug": {
"type": "integer",
"description": "Debug level for IDPEP step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "far fa-star-half"
},
"consensus_id": {
"title": "Consensus ID",
"type": "object",
"description": "",
"default": "",
"properties": {
"consensusid_algorithm": {
"type": "string",
"description": "How to combine the probabilities from the single search engines: best, combine using a sequence similarity-matrix (PEPMatrix), combine using shared ion count of peptides (PEPIons). See help for further info.",
"default": "best",
"fa_icon": "fas fa-list-ol",
"help_text": "Specifies how search engine results are combined: ConsensusID offers several algorithms that can aggregate results from multiple peptide identification engines ('search engines') into consensus identifications - typically one per MS2 spectrum. This works especially well for search engines that provide more than one peptide hit per spectrum, i.e. that report not just the best hit, but also a list of runner-up candidates with corresponding scores.\n\nThe available algorithms are:\n\n* PEPMatrix: Scoring based on posterior error probabilities (PEPs) and peptide sequence similarities. This algorithm uses a substitution matrix to score the similarity of sequences not listed by all search engines. It requires PEPs as the scores for all peptide hits.\n* PEPIons: Scoring based on posterior error probabilities (PEPs) and fragment ion similarities ('shared peak count'). This algorithm, too, requires PEPs as scores.\n* best: For each peptide ID, this uses the best score of any search engine as the consensus score.\n* worst: For each peptide ID, this uses the worst score of any search engine as the consensus score.\n* average: For each peptide ID, this uses the average score of all search engines as the consensus score.\n* ranks: Calculates a consensus score based on the ranks of peptide IDs in the results of different search engines. The final score is in the range (0, 1], with 1 being the best score.\n\nTo make scores comparable, for best, worst and average, PEPs are used as well. Peptide IDs are only considered the same if they map to exactly the same sequence (including modifications and their localization). Also isobaric aminoacids are (for now) only considered equal with the PEPMatrix/PEPIons algorithms.",
"enum": ["best", "PEPMatrix", "PEPIons"]
},
"consensusid_considered_top_hits": {
"type": "integer",
"description": "Only use the top N hits per search engine and spectrum for combination. Default: 0 = all",
"fa_icon": "fas fa-sliders-h",
"help_text": "Limits the number of alternative peptide hits considered per spectrum/feature for each identification run. This helps to reduce runtime, especially for the PEPMatrix and PEPIons algorithms, which involve costly 'all vs. all' comparisons of peptide hits per spectrum across engines."
},
"min_consensus_support": {
"type": "number",
"description": "A threshold for the ratio of occurrence/similarity scores of a peptide in other runs, to be reported. See help.",
"fa_icon": "fas fa-filter",
"help_text": "This allows filtering of peptide hits based on agreement between search engines. Every peptide sequence in the analysis has been identified by at least one search run. This parameter defines which fraction (between 0 and 1) of the remaining search runs must 'support' a peptide identification that should be kept. The meaning of 'support' differs slightly between algorithms: For best, worst, average and rank, each search run supports peptides that it has also identified among its top `consensusid_considered_top_hits` candidates. So `min_consensus_support` simply gives the fraction of additional search engines that must have identified a peptide. (For example, if there are three search runs, and only peptides identified by at least two of them should be kept, set `min_support` to 0.5.) For the similarity-based algorithms PEPMatrix and PEPIons, the 'support' for a peptide is the average similarity of the most-similar peptide from each (other) search run. (In the context of the JPR publication, this is the average of the similarity scores used in the consensus score calculation for a peptide.) Note: For most of the subsequent algorithms, only the best identification per spectrum is used."
},
"consensusid_debug": {
"type": "integer",
"description": "Debug level for ConsensusID. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"hidden": true,
"default": 0
}
},
"fa_icon": "fas fa-code-branch"
},
"isobaric_analyzer": {
"title": "Isobaric analyzer",
"type": "object",
"description": "Extracts and normalizes labeling information",
"default": "",
"properties": {
"select_activation": {
"type": "string",
"description": "Operate only on MSn scans where any of its precursors features a certain activation method. Set to empty to disable.",
"fa_icon": "fas fa-font",
"enum": ["HCD", "CID", "ETD", "ECD"]
},
"reporter_mass_shift": {
"type": "number",
"description": "Allowed shift (left to right) in Th from the expected position",
"default": 0.002,
"fa_icon": "fas fa-sliders-h"
},
"min_precursor_intensity": {
"type": "number",
"description": "Minimum intensity of the precursor to be extracted",
"default": 1.0,
"fa_icon": "fas fa-sliders-h"
},
"min_precursor_purity": {
"type": "number",
"description": "Minimum fraction of the total intensity. 0.0:1.0",
"default": 0.0,
"fa_icon": "fas fa-sliders-h",
"help_text": "Minimum fraction of the total intensity in the isolation window of the precursor spectrum"
},
"min_reporter_intensity": {
"type": "number",
"description": "Minimum intensity of the individual reporter ions to be extracted.",
"default": 0.0,
"fa_icon": "fas fa-sliders-h"
},
"precursor_isotope_deviation": {
"type": "number",
"description": "Maximum allowed deviation (in ppm) between theoretical and observed isotopic peaks of the precursor peak",
"default": 10.0,
"fa_icon": "fas fa-sliders-h"
},
"isotope_correction": {
"type": "boolean",
"description": "Enable isotope correction (highly recommended)",
"default": false,
"fa_icon": "fas fa-toggle-on"
},
"plex_corr_matrix_file": {
"type": "string",
"description": "Path to the correction matrix file for isobaric labelling, defaults are in assets folder",
"fa_icon": "fas fa-font"
},
"iso_normalization": {
"type": "boolean",
"description": "Enable normalization of the channel intensities",
"default": false,
"fa_icon": "fas fa-toggle-on",
"help_text": "The normalization is done by using the Median of Ratios. Also the ratios the medians is provided as control measure."
},
"reference_channel": {
"type": "string",
"description": "The reference channel, e.g. for calculating ratios.",
"fa_icon": "fas fa-list-ol",
"default": "126"
},
"iso_debug": {
"type": "integer",
"description": "Set the debug level",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "far fa-chart-bar"
},
"feature_mapper": {
"title": "Feature Mapper",
"type": "object",
"description": "Assigns protein/peptide identifications to features or consensus features. Here, features generated from isobaric reporter intensities of fragment spectra.",
"default": "",
"properties": {
"idmapper_debug": {
"type": "integer",
"description": "Debug level for IDMapper step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
}
},
"protein_inference": {
"title": "Protein inference",
"type": "object",
"description": "To group proteins, calculate scores on the protein (group) level and to potentially modify associations from peptides to proteins.",
"default": "",
"properties": {
"protein_inference_method": {
"type": "string",
"description": "The inference method to use. 'aggregation' (default) or 'bayesian'.",
"default": "aggregation",
"fa_icon": "fas fa-list-ol",
"help_text": "Infer proteins through:\n\n* 'aggregation' = aggregates all peptide scores across a protein (by calculating the maximum) (default)\n* 'bayesian' = compute a posterior probability for every protein based on a Bayesian network (i.e. using Epifany)\n* ('percolator' not yet supported)\n\n**Note:** If protein grouping is performed also depends on the `protein_quant` parameter (i.e. if peptides have to be unique or unique to a group only)",
"enum": ["aggregation", "bayesian"]
},
"protein_score": {
"type": "string",
"description": "[Ignored in Bayesian] How to aggregate scores of peptides matching to the same protein",
"default": "best",
"enum": ["best", "product", "sum"],
"fa_icon": "fas fa-list-ol"
},
"use_shared_peptides": {
"type": "boolean",
"description": "[Ignored in Bayesian] Also use shared peptides during score aggregation to protein level",
"default": true,
"fa_icon": "fas fa-filter"
},
"min_peptides_per_protein": {
"type": "integer",
"description": "[Ignored in Bayesian] Minimum number of peptides needed for a protein identification",
"default": 1,
"fa_icon": "fas fa-filter"
},
"top_PSMs": {
"type": "integer",
"description": "Consider only the top X PSMs per spectrum to find the best PSM per peptide. 0 considers all.",
"default": 1,
"fa_icon": "fas fa-filter"
},
"update_PSM_probabilities": {
"type": "boolean",
"description": "[Bayesian-only; Experimental] Update PSM probabilities with their posteriors under consideration of the protein probabilities.",
"default": false,
"fa_icon": "fas fa-list-ol",
"hidden": true
},
"protein_level_fdr_cutoff": {
"type": "number",
"description": "The experiment-wide protein (group)-level FDR cutoff. Default: 0.01",
"default": 0.01,
"fa_icon": "fas fa-filter",
"help_text": "This can be protein level if 'strictly_unique_peptides' are used for protein quantification. See [`--protein_quant`](#protein_quant)"
},
"picked_fdr": {
"type": "boolean",
"description": "Use picked protein FDRs",
"default": true,
"fa_icon": "fas fa-list-ol"
},
"psm_level_fdr_cutoff": {
"type": "number",
"description": "The experiment-wide PSM-level FDR cutoff. Default: 0.01",
"default": 0.01,
"fa_icon": "fas fa-filter",
"help_text": "After applying protein-level FDR cutoff, this additionally filters PSMs to be used for quantification and reporting."
},
"protein_inference_debug": {
"type": "integer",
"description": "Debug level for the protein inference step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "fab fa-hubspot"
},
"protein_quantification_dda": {
"title": "Protein Quantification (DDA)",
"type": "object",
"description": "General protein quantification settings for both LFQ and isobaric labelling.",
"default": "",
"properties": {
"labelling_type": {
"type": "string",
"description": "Specify the labelling method that was used. Will be ignored if SDRF was given but is mandatory otherwise",
"fa_icon": "fas fa-font",
"help_text": "Quantification method used in the experiment.",
"enum": [
"label free sample",
"itraq4plex",
"itraq8plex",
"tmt6plex",
"tmt10plex",
"tmt11plex",
"tmt16plex"
]
},
"top": {
"type": "integer",
"description": "Calculate protein abundance from this number of proteotypic peptides (most abundant first; '0' for all, Default 3)",
"default": 3,
"fa_icon": "fas fa-list-ol"
},
"average": {
"type": "string",
"description": "Averaging method used to compute protein abundances from peptide abundances.",
"default": "median",
"enum": ["median", "mean", "weighted_mean", "sum"],
"fa_icon": "fas fa-list-ol"
},
"best_charge_and_fraction": {
"type": "boolean",
"description": "Distinguish between fraction and charge states of a peptide. (default: 'false')",
"fa_icon": "far fa-check-square"
},
"ratios": {
"type": "boolean",
"description": "Add the log2 ratios of the abundance values to the output.",
"default": "false",
"fa_icon": "fas fa-list-ol"
},
"normalize": {
"type": "boolean",
"description": "Scale peptide abundances so that medians of all samples are equal.(Default false)",
"default": "false",
"fa_icon": "far fa-check-square"
},
"fix_peptides": {
"type": "boolean",
"description": "Use the same peptides for protein quantification across all samples.(Default false)",
"default": "false",
"fa_icon": "fas fa-bug"
},
"include_all": {
"type": "boolean",
"description": "Include results for proteins with fewer proteotypic peptide than indicated by top.",
"default": true,
"fa_icon": "fas fa-check-square"
},
"protein_quant": {
"type": "string",
"description": "Quantify proteins based on:\n\n* 'unique_peptides' = use peptides mapping to single proteins or a group of indistinguishable proteins (according to the set of experimentally identified peptides)\n* 'strictly_unique_peptides' (only LFQ) = use peptides mapping to a unique single protein only\n* 'shared_peptides' = use shared peptides, too, but only greedily for its best group (by inference score and nr. of peptides)",
"default": "unique_peptides",
"enum": ["unique_peptides", "strictly_unique_peptides", "shared_peptides"],
"fa_icon": "fas fa-list-ol"
},
"export_mztab": {
"type": "boolean",
"description": "Export the results in mzTab format.",
"default": true,
"fa_icon": "fas fa-check-square"
},
"protein_quant_debug": {
"type": "integer",
"description": "Debug level for the protein quantification step. Increase for verbose logging",
"fa_icon": "fas fa-bug",
"default": 0,
"hidden": true
}
},
"fa_icon": "fas fa-braille"
},
"protein_quantification_lfq": {
"title": "Protein Quantification (LFQ)",
"type": "object",
"description": "",
"default": "",
"properties": {
"quantification_method": {
"type": "string",
"description": "Choose between feature-based quantification based on integrated MS1 signals ('feature_intensity'; default) or spectral counting of PSMs ('spectral_counting'). **WARNING:** 'spectral_counting' is not compatible with our MSstats step yet. MSstats will therefore be disabled automatically with that choice.",
"default": "feature_intensity",
"enum": ["feature_intensity", "spectral_counting"],
"fa_icon": "fas fa-list-ol"
},
"mass_recalibration": {
"type": "boolean",
"description": "Recalibrates masses based on precursor mass deviations to correct for instrument biases. (default: 'false')",
"fa_icon": "far fa-check-square"
},
"targeted_only": {
"type": "boolean",
"description": "Only looks for quantifiable features at locations with an identified spectrum. Set to false to include unidentified features so they can be linked and matched to identified ones (= match between runs). (default: 'true')",
"default": true,
"fa_icon": "far fa-check-square"
},
"feature_with_id_min_score": {
"type": "number",
"description": "The minimum probability (e.g.: 0.25) an identified (=id targeted) feature must have to be kept for alignment and linking (0=no filter).",
"default": 0.1,
"fa_icon": "fas fa-filter",
"help_text": "The minimum probability (e.g.: 0.25) an identified (=id targeted) feature must have to be kept for alignment and linking (0=no filter). (default: '0.0') (min: '0.0' max: '1.0')"
},
"feature_without_id_min_score": {
"type": "number",
"description": "The minimum probability (e.g.: 0.75) an unidentified feature must have to be kept for alignment and linking (0=no filter).",
"default": 0.75,
"fa_icon": "fas fa-filter",
"help_text": "The minimum probability (e.g.: 0.75) an unidentified feature must have to be kept for alignment and linking (0=no filter). (default: '0.0') (min: '0.0' max: '1.0')"
},
"lfq_intensity_threshold": {
"type": "number",
"description": "The minimum intensity for a feature to be considered for quantification. (default: '10000')",
"default": 1000,
"fa_icon": "fas fa-filter",
"help_text": "The minimum intensity for a feature to be considered for quantification. (default: '10000')"
},
"alignment_order": {
"type": "string",
"description": "The order in which maps are aligned. Star = all vs. the reference with most IDs (default). TreeGuided = an alignment tree is calculated first based on similarity measures of the IDs in the maps.",
"default": "star",
"enum": ["star", "treeguided"],
"fa_icon": "far fa-list-ol"
},
"quantify_decoys": {
"type": "boolean",
"default": false,
"description": "Also quantify decoys? (Usually only needed for Triqler post-processing output with [`--add_triqler_output`](#add_triqler_output), where it is auto-enabled)",
"fa_icon": "far fa-check-square"
},
"plfq_debug": {
"type": "integer",
"description": "Debug level when running the re-scoring. Logs become more verbose and at '>666' potentially very large temporary files are kept.",
"fa_icon": "fas fa-bug",
"hidden": true,
"default": 0
}
},
"fa_icon": "fas fa-braille"