forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_train.py
178 lines (155 loc) · 6.26 KB
/
benchmark_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os
import os.path as osp
from argparse import ArgumentParser
from mmengine.config import Config, DictAction
from mmengine.logging import MMLogger, print_log
from mmengine.registry import RUNNERS
from mmengine.runner import Runner
from mmdet.testing import replace_to_ceph
from mmdet.utils import register_all_modules, replace_cfg_vals
def parse_args():
parser = ArgumentParser()
parser.add_argument('config', help='test config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--ceph', action='store_true')
parser.add_argument('--save-ckpt', action='store_true')
parser.add_argument(
'--amp',
action='store_true',
default=False,
help='enable automatic-mixed-precision training')
parser.add_argument(
'--auto-scale-lr',
action='store_true',
help='enable automatically scaling LR.')
parser.add_argument(
'--resume',
action='store_true',
help='resume from the latest checkpoint in the work_dir automatically')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
args = parser.parse_args()
return args
# TODO: Need to refactor train.py so that it can be reused.
def fast_train_model(config_name, args, logger=None):
cfg = Config.fromfile(config_name)
cfg = replace_cfg_vals(cfg)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = osp.join(args.work_dir,
osp.splitext(osp.basename(config_name))[0])
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(config_name))[0])
ckpt_hook = cfg.default_hooks.checkpoint
by_epoch = ckpt_hook.get('by_epoch', True)
fast_stop_hook = dict(type='FastStopTrainingHook')
fast_stop_hook['by_epoch'] = by_epoch
if args.save_ckpt:
if by_epoch:
interval = 1
stop_iter_or_epoch = 2
else:
interval = 4
stop_iter_or_epoch = 10
fast_stop_hook['stop_iter_or_epoch'] = stop_iter_or_epoch
fast_stop_hook['save_ckpt'] = True
ckpt_hook.interval = interval
if 'custom_hooks' in cfg:
cfg.custom_hooks.append(fast_stop_hook)
else:
custom_hooks = [fast_stop_hook]
cfg.custom_hooks = custom_hooks
# TODO: temporary plan
if 'visualizer' in cfg:
if 'name' in cfg.visualizer:
del cfg.visualizer.name
# enable automatic-mixed-precision training
if args.amp is True:
optim_wrapper = cfg.optim_wrapper.type
if optim_wrapper == 'AmpOptimWrapper':
print_log(
'AMP training is already enabled in your config.',
logger='current',
level=logging.WARNING)
else:
assert optim_wrapper == 'OptimWrapper', (
'`--amp` is only supported when the optimizer wrapper type is '
f'`OptimWrapper` but got {optim_wrapper}.')
cfg.optim_wrapper.type = 'AmpOptimWrapper'
cfg.optim_wrapper.loss_scale = 'dynamic'
# enable automatically scaling LR
if args.auto_scale_lr:
if 'auto_scale_lr' in cfg and \
'enable' in cfg.auto_scale_lr and \
'base_batch_size' in cfg.auto_scale_lr:
cfg.auto_scale_lr.enable = True
else:
raise RuntimeError('Can not find "auto_scale_lr" or '
'"auto_scale_lr.enable" or '
'"auto_scale_lr.base_batch_size" in your'
' configuration file.')
if args.ceph:
replace_to_ceph(cfg)
cfg.resume = args.resume
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
runner.train()
# Sample test whether the train code is correct
def main(args):
# register all modules in mmdet into the registries
register_all_modules(init_default_scope=False)
config = Config.fromfile(args.config)
# test all model
logger = MMLogger.get_instance(
name='MMLogger',
log_file='benchmark_train.log',
log_level=logging.ERROR)
for model_key in config:
model_infos = config[model_key]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
print('processing: ', model_info['config'], flush=True)
config_name = model_info['config'].strip()
try:
fast_train_model(config_name, args, logger)
except RuntimeError as e:
# quick exit is the normal exit message
if 'quick exit' not in repr(e):
logger.error(f'{config_name} " : {repr(e)}')
except Exception as e:
logger.error(f'{config_name} " : {repr(e)}')
if __name__ == '__main__':
args = parse_args()
main(args)