-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMLF.py
287 lines (251 loc) · 10.7 KB
/
MLF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# -*- coding: utf-8 -*-
"""
https://github.com/brunobeltran/mittag-leffler
Roberto Garrappa (2020). The Mittag-Leffler function (https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function), MATLAB Central File Exchange. Retrieved April 7, 2020.
[1] R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions, SIAM Journal of Numerical Analysis, 2015, 53(3), 1350-1369
E = ML(z,alpha,beta,gama) evaluates the ML function with three parameters alpha,
beta and gama for the corresponding elements of z; alpha must be a real scalar
such that 0<alpha<1, beta any real scalar and gama a real and positive scalar;
the arguments z must satisfy |Arg(z)| > alpha*pi.
"""
import numpy as np
from scipy.special import gamma
def LTInversion(t,lamda,alpha,beta,gama,log_epsilon):
# Evaluation of the relevant poles
theta = np.angle(lamda)
kmin = np.ceil(-alpha/2. - theta/2./np.pi)
kmax = np.floor(alpha/2. - theta/2./np.pi)
k_vett = np.arange(kmin, kmax+1)
s_star = np.abs(lamda)**(1./alpha) * np.exp(1j*(theta+2*k_vett*np.pi)/alpha)
# Evaluation of phi(s_star) for each pole
phi_s_star = (np.real(s_star)+np.abs(s_star))/2
# Sorting of the poles according to the value of phi(s_star)
index_s_star = np.argsort(phi_s_star)
phi_s_star = phi_s_star.take(index_s_star)
s_star = s_star.take(index_s_star)
# Deleting possible poles with phi_s_star=0
index_save = phi_s_star > 1.0e-15
s_star = s_star.repeat(index_save)
phi_s_star = phi_s_star.repeat(index_save)
# Inserting the origin in the set of the singularities
s_star = np.hstack([[0], s_star])
phi_s_star = np.hstack([[0], phi_s_star])
J1 = len(s_star)
J = J1 - 1
# Strength of the singularities
p = gama*np.ones((J1,), np.float64)
p[0] = max(0,-2*(alpha*gama-beta+1))
q = gama*np.ones((J1,), np.float64)
q[-1] = np.inf
phi_s_star = np.hstack([phi_s_star, [np.inf]])
# Looking for the admissible regions with respect to round-off errors
admissible_regions = \
np.nonzero(np.bitwise_and(
(phi_s_star[:-1] < (log_epsilon - np.log(np.finfo(np.float64).eps))/t),
(phi_s_star[:-1] < phi_s_star[1:])))[0]
# Initializing vectors for optimal parameters
JJ1 = admissible_regions[-1]
mu_vett = np.ones((JJ1+1,), np.float64)*np.inf
N_vett = np.ones((JJ1+1,), np.float64)*np.inf
h_vett = np.ones((JJ1+1,), np.float64)*np.inf
# Evaluation of parameters for inversion of LT in each admissible region
find_region = False
while not find_region:
for j1 in admissible_regions:
if j1 < J1-1:
muj, hj, Nj = OptimalParam_RB(t, phi_s_star[j1], phi_s_star[j1+1], p[j1], q[j1], log_epsilon)
else:
muj, hj, Nj = OptimalParam_RU(t, phi_s_star[j1], p[j1], log_epsilon)
mu_vett[j1] = muj
h_vett[j1] = hj
N_vett[j1] = Nj
if N_vett.min() > 200:
log_epsilon = log_epsilon + np.log(10)
else:
find_region = True
# Selection of the admissible region for integration which
# involves the minimum number of nodes
iN = np.argmin(N_vett)
N = N_vett[iN]
mu = mu_vett[iN]
h = h_vett[iN]
# Evaluation of the inverse Laplace transform
k = np.arange(-N, N+1)
u = h*k
z = mu*(1j*u+1.)**2
zd = -2.*mu*u + 2j*mu
zexp = np.exp(z*t)
F = z**(alpha*gama-beta)/(z**alpha - lamda)**gama*zd
S = zexp*F
Integral = h*np.sum(S)/2./np.pi/1j
# Evaluation of residues
ss_star = s_star[iN+1:]
Residues = np.sum(1./alpha*(ss_star)**(1-beta)*np.exp(t*ss_star))
# Evaluation of the ML function
E = Integral + Residues
if np.imag(lamda) == 0.:
E = np.real(E)
return E
# =========================================================================
# Finding optimal parameters in a right-bounded region
# =========================================================================
def OptimalParam_RB(t, phi_s_star_j, phi_s_star_j1, pj, qj, log_epsilon):
# Definition of some constants
log_eps = -36.043653389117154 # log(eps)
fac = 1.01
conservative_error_analysis = False
# Maximum value of fbar as the ration between tolerance and round-off unit
f_max = np.exp(log_epsilon - log_eps)
# Evaluation of the starting values for sq_phi_star_j and sq_phi_star_j1
sq_phi_star_j = np.sqrt(phi_s_star_j)
threshold = 2.*np.sqrt((log_epsilon - log_eps)/t)
sq_phi_star_j1 = min(np.sqrt(phi_s_star_j1), threshold - sq_phi_star_j)
# Zero or negative values of pj and qj
if pj < 1.0e-14 and qj < 1.0e-14:
sq_phibar_star_j = sq_phi_star_j
sq_phibar_star_j1 = sq_phi_star_j1
adm_region = 1
# Zero or negative values of just pj
if pj < 1.0e-14 and qj >= 1.0e-14:
sq_phibar_star_j = sq_phi_star_j
if sq_phi_star_j > 0:
f_min = fac*(sq_phi_star_j/(sq_phi_star_j1-sq_phi_star_j))**qj
else:
f_min = fac
if f_min < f_max:
f_bar = f_min + f_min/f_max*(f_max-f_min)
fq = f_bar**(-1/qj)
sq_phibar_star_j1 = (2*sq_phi_star_j1-fq*sq_phi_star_j)/(2+fq)
adm_region = True
else:
adm_region = False
# Zero or negative values of just qj
if pj >= 1.0e-14 and qj < 1.0e-14:
sq_phibar_star_j1 = sq_phi_star_j1
f_min = fac*(sq_phi_star_j1/(sq_phi_star_j1-sq_phi_star_j))**pj
if f_min < f_max:
f_bar = f_min + f_min/f_max*(f_max-f_min)
fp = f_bar**(-1./pj)
sq_phibar_star_j = (2.*sq_phi_star_j+fp*sq_phi_star_j1)/(2-fp)
adm_region = True
else:
adm_region = False
# Positive values of both pj and qj
if pj >= 1.0e-14 and qj >= 1.0e-14:
f_min = fac*(sq_phi_star_j+sq_phi_star_j1) / \
(sq_phi_star_j1-sq_phi_star_j)**max(pj, qj)
if f_min < f_max:
f_min = max(f_min,1.5)
f_bar = f_min + f_min/f_max*(f_max-f_min)
fp = f_bar**(-1/pj)
fq = f_bar**(-1/qj)
if ~conservative_error_analysis:
w = -phi_s_star_j1*t/log_epsilon
else:
w = -2.*phi_s_star_j1*t/(log_epsilon-phi_s_star_j1*t)
den = 2+w - (1+w)*fp + fq
sq_phibar_star_j = ((2+w+fq)*sq_phi_star_j + fp*sq_phi_star_j1)/den
sq_phibar_star_j1 = (-(1.+w)*fq*sq_phi_star_j + (2.+w-(1.+w)*fp)*sq_phi_star_j1)/den
adm_region = True
else:
adm_region = False
if adm_region:
log_epsilon = log_epsilon - np.log(f_bar)
if not conservative_error_analysis:
w = -sq_phibar_star_j1**2*t/log_epsilon
else:
w = -2.*sq_phibar_star_j1**2*t/(log_epsilon-sq_phibar_star_j1**2*t)
muj = (((1.+w)*sq_phibar_star_j + sq_phibar_star_j1)/(2.+w))**2
hj = -2.*np.pi/log_epsilon*(sq_phibar_star_j1-sq_phibar_star_j) \
/ ((1.+w)*sq_phibar_star_j + sq_phibar_star_j1)
Nj = np.ceil(np.sqrt(1-log_epsilon/t/muj)/hj)
else:
muj = 0.
hj = 0.
Nj = np.inf
return muj, hj, Nj
# =========================================================================
# Finding optimal parameters in a right-unbounded region
# =========================================================================
def OptimalParam_RU(t, phi_s_star_j, pj, log_epsilon):
# Evaluation of the starting values for sq_phi_star_j
sq_phi_s_star_j = np.sqrt(phi_s_star_j)
if phi_s_star_j > 0:
phibar_star_j = phi_s_star_j*1.01
else:
phibar_star_j = 0.01
sq_phibar_star_j = np.sqrt(phibar_star_j)
# Definition of some constants
f_min = 1
f_max = 10
f_tar = 5
# Iterative process to look for fbar in [f_min,f_max]
while True:
phi_t = phibar_star_j*t
log_eps_phi_t = log_epsilon/phi_t
Nj = np.ceil(phi_t/np.pi*(1. - 3*log_eps_phi_t/2 + np.sqrt(1-2*log_eps_phi_t)))
A = np.pi*Nj/phi_t
sq_muj = sq_phibar_star_j*np.abs(4-A)/np.abs(7-np.sqrt(1+12*A))
fbar = ((sq_phibar_star_j-sq_phi_s_star_j)/sq_muj)**(-pj)
if (pj < 1.0e-14) or (f_min < fbar and fbar < f_max):
break
sq_phibar_star_j = f_tar**(-1./pj)*sq_muj + sq_phi_s_star_j
phibar_star_j = sq_phibar_star_j**2
muj = sq_muj**2
hj = (-3*A - 2 + 2*np.sqrt(1+12*A))/(4-A)/Nj
# Adjusting integration parameters to keep round-off errors under control
log_eps = np.log(np.finfo(np.float64).eps)
threshold = (log_epsilon - log_eps)/t
if muj > threshold:
if abs(pj) < 1.0e-14:
Q = 0
else:
Q = f_tar**(-1/pj)*np.sqrt(muj)
phibar_star_j = (Q + np.sqrt(phi_s_star_j))**2
if phibar_star_j < threshold:
w = np.sqrt(log_eps/(log_eps-log_epsilon))
u = np.sqrt(-phibar_star_j*t/log_eps)
muj = threshold
Nj = np.ceil(w*log_epsilon/2/np.pi/(u*w-1))
hj = np.sqrt(log_eps/(log_eps - log_epsilon))/Nj
else:
Nj = np.inf
hj = 0
return muj, hj, Nj
def ml(z, alpha, beta=1., gama=1.):
eps = np.finfo(np.float64).eps
if np.real(alpha) <= 0 or np.real(gama) <= 0 or np.imag(alpha) != 0. \
or np.imag(beta) != 0. or np.imag(gama) != 0.:
raise ValueError('ALPHA and GAMA must be real and positive. BETA must be real.')
if np.abs(gama-1.) > eps:
if alpha > 1.:
raise ValueError('GAMMA != 1 requires 0 < ALPHA < 1')
if (np.abs(np.angle(np.repeat(z, np.abs(z) > eps))) <= alpha*np.pi).any():
raise ValueError('|Arg(z)| <= alpha*pi')
return np.vectorize(ml_, [np.float64])(z, alpha, beta, gama)
def ml_(z, alpha, beta, gama):
# Target precision
log_epsilon = np.log(1.e-15)
# Inversion of the LT
if np.abs(z) < 1.e-15:
return 1/gamma(beta)
else:
return LTInversion(1, z, alpha, beta, gama, log_epsilon)
def mlf(alpha, beta, zarray):
val =np.empty(zarray.shape)
for ij in range(zarray.shape[0]):
val[ij] = ml_(zarray[ij], alpha, beta, gama=1.)
return val
if __name__ == '__main__':
import matplotlib.pyplot as plt
x = np.arange(0, 10, 0.1)
plt.figure(figsize=(10,5))
for ii in range(5):
plt.plot(x, mlf(ii*0.2+0.01, 1, -x*x), label="alpha = "+str(ii))
plt.legend()
plt.ylim(-0.1, 1.1); plt.xlim(-1, 11); plt.grid()
# plt.plot(x, mlf(-x*x, 0.1, 1, 1))
plt.figure(2)
t = np.logspace(-5, 5, 100)
test = mlf(0.7, 1, -(100/300)*t**0.7)
plt.loglog(t, test)