-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_sed_net.py
398 lines (313 loc) · 13.5 KB
/
train_sed_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
This scrip trains model to predict per point primitive type.
"""
import json
import logging
import nntplib
import os
import sys
from shutil import copyfile
from tabnanny import verbose
from torch import cosine_embedding_loss, index_put
from src.dataset_mix import my_mix_dataset
program_root = os.path.dirname(os.path.abspath(__file__)) + "/"
sys.path.append(program_root + "src")
import os
from read_config import Config
config = Config(sys.argv[1])
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu
import numpy as np
import torch.optim as optim
import torch.utils.data
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR
from torch.utils.data import DataLoader
from read_config import Config
from src.SEDNet import SEDNet
from src.dataset_segments_my import my_simple_data
from src.dataset_segments import ori_simple_data
from src.segment_loss import (
EmbeddingLoss,
LabelSmoothingLoss,
evaluate_miou,
primitive_loss,
)
###
from src.My_edge_loss import compute_embedding_loss, edge_cls_loss, compute_edge_embedding_loss # HPNet
model_name = config.model_path.format(
config.batch_size,
config.lr,
config.mode,
config.knn
)
print(model_name)
if not os.path.exists("trains/{}".format(model_name)):
os.mkdir("trains/{}/".format(model_name))
os.mkdir("trains/{}/config".format(model_name))
os.mkdir("trains/{}/ckpts".format(model_name))
userspace = os.path.dirname(os.path.abspath(__file__))
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s:%(name)s:%(message)s")
file_handler = logging.FileHandler(
"trains/{}".format(model_name)+"/{}.log".format(model_name), mode="a"
)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(handler)
with open(
"trains/{}/config".format(model_name)+"/config.json", "w"
) as file:
json.dump(vars(config), file)
source_file = __file__
destination_file = "trains/{}/config".format(model_name)+"/{}".format(__file__.split("/")[-1])
copyfile(source_file, destination_file)
if_normals = config.normals
if_normal_noise = True
if_jitter_points = config.dataset == "noise"
if if_jitter_points:
print("USE jitter NOISE!")
print("logs prepared!")
try:
my_knn = config.knn
except:
my_knn = 64
print("dgcnn knn {}".format(my_knn))
def on_load_checkpoint(model, state_dict) -> None:
model_state_dict = model.state_dict()
for k in state_dict:
if k in model_state_dict:
if state_dict[k].shape != model_state_dict[k].shape:
logger.info(f"Skip loading parameter: {k}, "
f"required shape: {model_state_dict[k].shape}, "
f"loaded shape: {state_dict[k].shape}")
'''
state_dict[k] = model_state_dict[k]
is_changed = True'''
else:
'''
logger.info(f"Dropping parameter {k}")
is_changed = True'''
model_state_dict[k] = state_dict[k]
return model_state_dict
Loss = EmbeddingLoss(margin=1.0, if_mean_shift=False)
type_smoothCE_loss = LabelSmoothingLoss(smoothing=config.smooth)
model = SEDNet(
embedding=True,
emb_size=128,
primitives=True,
num_primitives=6,
loss_function=Loss.triplet_loss,
mode=5 if if_normals else 0,
num_channels= 6 if if_normals else 3,
combine_label_prim=True, # early fusion
edge_module=True, # add edge cls module
late_fusion=True, # ======================================
nn_nb=my_knn,
predict_normal=False
)
print("model got!")
model = model.cuda()
if config.optim=="adam":
optimizer = optim.Adam(model.parameters(), lr=config.lr)
else:
print("USE AdamW! L2 weight decay {}!".format(config.weight_decay))
optimizer = optim.AdamW(model.parameters(), lr=config.lr, weight_decay=config.weight_decay)
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
print("model to cuda!")
# ==== load ckpt
if config.preload_model:
print("loading from ckpt:", config.pretrain_model_path)
state_dict = torch.load(config.pretrain_model_path)
if torch.cuda.device_count() > 1:
state_dict = {"module."+k: state_dict[k] for k in state_dict.keys()} if not list(state_dict.keys())[0].startswith("module.") else state_dict
else:
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys()} if list(state_dict.keys())[0].startswith("module.") else state_dict
try:
model.load_state_dict(state_dict)
except Exception as e:
print(e)
print("load error!")
new_dict = on_load_checkpoint(model, state_dict)
model.load_state_dict(new_dict, strict=False)
if config.preload_model and config.pretrain_opti_path != "":
print("loading from ckpt optimizer:", config.pretrain_opti_path)
optimizer.load_state_dict(
torch.load(config.pretrain_opti_path)
)
for g in optimizer.param_groups:
g['lr'] = config.lr
print("model ckpt load!")
# origin ABC parsenet dataset + ours edge combined dataset for train
mix_train_dataset = my_mix_dataset(if_normals=if_normals, if_train=True, aug=False) # ====
loader_train = torch.utils.data.DataLoader(
mix_train_dataset, batch_size=config.batch_size, num_workers=8, shuffle=True, drop_last=True, persistent_workers=True
)
print("get mixed train data")
# origin ABC parsenet dataset for test
mix_test_dataset = ori_simple_data(if_normals=if_normals, if_train=False)
loader_test = torch.utils.data.DataLoader(
mix_test_dataset, batch_size=config.batch_size, num_workers=8, shuffle=False, drop_last=True, persistent_workers=True
)
print("get mixed test data")
cur_lr = optimizer.state_dict()['param_groups'][0]['lr']
print("current LR: ", cur_lr)
if config.sche == "cos":
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=cur_lr / 20, verbose=True)
else:
scheduler = ReduceLROnPlateau(
optimizer, mode="min", factor=0.5, patience=config.patience, verbose=True, min_lr=5e-5
)
prev_test_loss = 1e4
prev_inst_embed_loss = 1e4
prev_type_bce_loss = 1e4
eval_inter = config.eval_T
todebug = False
cur_inter = 0
for e in range(config.epochs):
train_emb_losses = []
train_prim_losses = []
train_iou = []
train_edgeBce = []
train_losses = []
train_edge_embed_loss = []
model.train()
num_iter = 1
for train_b_id, data in enumerate(loader_train): # ====================================> 1000
# ================== My ABC Edge train
optimizer.zero_grad()
losses = 0
ious = 0
p_losses = 0
embed_losses = 0
edge_cls_losses = 0
edge_embed_losses = 0
for _ in range(num_iter):
points, labels, normals, primitives, edges, edges_W = data
points, labels, normals, primitives, edges, edges_W = points.cuda(), labels.cuda(), normals.cuda(), primitives.cuda(), edges.cuda(), edges_W.cuda()
aux_prim_logprob = None
if if_normals:
input = torch.cat([points, normals], 2).transpose(1,2)
embedding, primitives_log_prob, _, edges_pred = model(points=input)
else:
embedding, primitives_log_prob, _, edges_pred = model(points.transpose(1,2))
embed_loss = torch.mean(Loss.triplet_loss(embedding, labels.cpu().numpy()))
primitives[(primitives==9) | (primitives==6) | (primitives==7)] = 0
primitives[primitives==8] = 2
edge_loss = edge_cls_loss(edges_pred, edges, edges_W)
p_loss = type_smoothCE_loss(primitives_log_prob.transpose(1, 2).contiguous().view(-1, 6), primitives.contiguous().view(-1))
if aux_prim_logprob is not None:
aux_p_loss = type_smoothCE_loss(aux_prim_logprob.transpose(1, 2).contiguous().view(-1, 6), primitives.contiguous().view(-1))
iou = 0
edge_embed_loss = compute_edge_embedding_loss(edges_pred=edges_pred, pred_feat=embedding,
gt_label=labels,
use_type=True, primitives=primitives, primitives_log_prob=primitives_log_prob
)
loss = embed_loss + p_loss + edge_loss + 0.25 * edge_embed_loss
if aux_prim_logprob is not None:
loss += 0.5 * aux_p_loss
loss.backward()
losses += loss.data.cpu().numpy() / num_iter
p_losses += p_loss.data.cpu().numpy() / num_iter
ious += iou / num_iter
edge_cls_losses += edge_loss.data.cpu().numpy() / num_iter
embed_losses += embed_loss.data.cpu().numpy() / num_iter
edge_embed_losses += aux_p_loss.data.cpu().numpy() / num_iter if aux_prim_logprob is not None else 0
optimizer.step()
train_iou.append(ious)
train_losses.append(losses)
train_prim_losses.append(p_losses)
train_emb_losses.append(embed_losses)
train_edgeBce.append(edge_cls_losses)
train_edge_embed_loss.append(edge_embed_losses)
cur_inter += 1
print(
"\rEpoch: {} iter: {}, prim loss: {}, emb loss: {}, iou: {}, edge_cls: {}, edge embed:{}".format(
e, train_b_id, p_losses, embed_losses, iou, edge_cls_losses, edge_embed_losses
),
end="",
)
if cur_inter == eval_inter or todebug:
todebug = False
cur_inter = 0
test_emb_losses = []
test_prim_losses = []
test_losses = []
test_iou = []
model.eval()
for val_b_id, data in enumerate(loader_test):
points, labels, normals, primitives, edges, edges_W = data
points, labels, normals, primitives, edges, edges_W = points.cuda(), labels.cuda(), normals.cuda(), primitives.cuda(), edges.cuda(), edges_W.cuda()
with torch.no_grad():
aux_prim_logprob = None
if if_normals:
input = torch.cat([points, normals], 2).transpose(1,2)
embedding, primitives_log_prob, _, edges_pred = model(input)
else:
embedding, primitives_log_prob, _, edges_pred = model(points.transpose(1,2))
embed_loss = torch.mean(compute_embedding_loss(embedding.transpose(1, 2), labels)[0])
primitives[(primitives==9) | (primitives==6) | (primitives==7)] = 0
primitives[primitives==8] = 2
p_loss = primitive_loss(primitives_log_prob, primitives)
loss = embed_loss + p_loss
# 计算测试集 prim类别的iou
iou = evaluate_miou(
primitives.data.cpu().numpy(),
primitives_log_prob.permute(0, 2, 1).data.cpu().numpy(),
)
test_iou.append(iou)
test_prim_losses.append(p_loss.data.cpu().numpy())
test_emb_losses.append(embed_loss.data.cpu().numpy())
test_losses.append(loss.data.cpu().numpy())
# torch.cuda.empty_cache()
print("\n")
logger.info(
"Epoch: {}/{} => TrL:{}, TsL:{}, TrP:{}, TsP:{}, TrE:{}, TsE:{}, TrI:{}, TsI:{}, TrEdgeCls {}, Tr EdgeEmbed {},".format(
e,
config.epochs,
np.mean(train_losses),
np.mean(test_losses),
np.mean(train_prim_losses),
np.mean(test_prim_losses),
np.mean(train_emb_losses),
np.mean(test_emb_losses),
np.mean(train_iou),
np.mean(test_iou),
np.mean(train_edgeBce),
np.mean(train_edge_embed_loss),
)
)
my_crition = np.mean(test_emb_losses) + 0.15 * np.mean(test_prim_losses)
test_emb_losses = np.mean(test_emb_losses)
test_prim_losses = np.mean(test_prim_losses)
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(my_crition)
else:
scheduler.step()
if prev_test_loss > my_crition:
logger.info("total improvement, saving model at epoch: {}".format(e))
prev_test_loss = my_crition
torch.save(
model.state_dict(),
"trains/{}/ckpts".format(model_name)+"/{}.pth".format(model_name),
)
if prev_inst_embed_loss > test_emb_losses:
logger.info("inst improvement, saving model at epoch: {}".format(e))
prev_inst_embed_loss = test_emb_losses
torch.save(
model.state_dict(),
"trains/{}/ckpts".format(model_name)+"/{}_InstBest.pth".format(model_name),
)
if prev_type_bce_loss > test_prim_losses:
logger.info("type improvement, saving model at epoch: {}".format(e))
prev_type_bce_loss = test_prim_losses
torch.save(
model.state_dict(),
"trains/{}/ckpts".format(model_name)+"/{}_TypeBest.pth".format(model_name),
)
else:
torch.save(
model.state_dict(),
"trains/{}/ckpts".format(model_name)+"/{}_latest.pth".format(model_name),
)