-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
103 lines (93 loc) · 4.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# -*- coding: utf-8 -*-
"""
Created on Thu May 27 17:15:42 2021
@author: JiaLing Tu
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def double_conv(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2, inplace=True),
)
class Unet(nn.Module):
# initializers
def __init__(self, d=64, out_channels=3):
super(Unet, self).__init__()
# Unet encoder
self.conv1 = nn.Conv2d(3, d, 4, 2, 1)
self.conv2 = nn.Conv2d(d, d * 2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d * 2)
self.conv3 = nn.Conv2d(d * 2, d * 4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d * 4)
self.conv4 = nn.Conv2d(d * 4, d * 8, 4, 2, 1)
self.conv4_bn = nn.BatchNorm2d(d * 8)
self.conv5 = nn.Conv2d(d * 8, d * 8, 4, 2, 1)
self.conv5_bn = nn.BatchNorm2d(d * 8)
self.conv6 = nn.Conv2d(d * 8, d * 8, 4, 2, 1)
self.conv6_bn = nn.BatchNorm2d(d * 8)
self.conv7 = nn.Conv2d(d * 8, d * 8, 4, 2, 1)
self.conv7_bn = nn.BatchNorm2d(d * 8)
self.conv8 = nn.Conv2d(d * 8, d * 8, 4, 2, 1)
# self.conv8_bn = nn.BatchNorm2d(d * 8)
# Unet decoder
self.deconv1 = nn.ConvTranspose2d(d * 8, d * 8, 4, 2, 1)
self.deconv1_bn = nn.BatchNorm2d(d * 8)
self.deconv2 = nn.ConvTranspose2d(d * 8 * 2, d * 8, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d * 8)
self.deconv3 = nn.ConvTranspose2d(d * 8 * 2, d * 8, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d * 8)
self.deconv4 = nn.ConvTranspose2d(d * 8 * 2, d * 8, 4, 2, 1)
self.deconv4_bn = nn.BatchNorm2d(d * 8)
self.deconv5 = nn.ConvTranspose2d(d * 8 * 2, d * 4, 4, 2, 1)
self.deconv5_bn = nn.BatchNorm2d(d * 4)
self.deconv6 = nn.ConvTranspose2d(d * 4 * 2, d * 2, 4, 2, 1)
self.deconv6_bn = nn.BatchNorm2d(d * 2)
self.deconv7 = nn.ConvTranspose2d(d * 2 * 2, d, 4, 2, 1)
self.deconv7_bn = nn.BatchNorm2d(d)
self.deconv8 = nn.Sequential(
nn.ConvTranspose2d(d * 2, out_channels, 4, 2, 1),
nn.Tanh()
)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input):
e1 = self.conv1(input)
e2 = self.conv2_bn(self.conv2(F.leaky_relu(e1, 0.2)))
e3 = self.conv3_bn(self.conv3(F.leaky_relu(e2, 0.2)))
e4 = self.conv4_bn(self.conv4(F.leaky_relu(e3, 0.2)))
e5 = self.conv5_bn(self.conv5(F.leaky_relu(e4, 0.2)))
e6 = self.conv6_bn(self.conv6(F.leaky_relu(e5, 0.2)))
e7 = self.conv7_bn(self.conv7(F.leaky_relu(e6, 0.2)))
e8 = self.conv8(F.leaky_relu(e7, 0.2))
# e8 = self.conv8_bn(self.conv8(F.leaky_relu(e7, 0.2)))
d1 = F.dropout(self.deconv1_bn(self.deconv1(F.relu(e8))), 0.5, training=True)
d1 = torch.cat([d1, e7], 1)
d2 = F.dropout(self.deconv2_bn(self.deconv2(F.relu(d1))), 0.5, training=True)
d2 = torch.cat([d2, e6], 1)
d3 = F.dropout(self.deconv3_bn(self.deconv3(F.relu(d2))), 0.5, training=True)
d3 = torch.cat([d3, e5], 1)
d4 = self.deconv4_bn(self.deconv4(F.relu(d3)))
# d4 = F.dropout(self.deconv4_bn(self.deconv4(F.relu(d3))), 0.5)
d4 = torch.cat([d4, e4], 1)
d5 = self.deconv5_bn(self.deconv5(F.relu(d4)))
d5 = torch.cat([d5, e3], 1)
d6 = self.deconv6_bn(self.deconv6(F.relu(d5)))
d6 = torch.cat([d6, e2], 1)
d7 = self.deconv7_bn(self.deconv7(F.relu(d6)))
d7 = torch.cat([d7, e1], 1)
d8 = self.deconv8(F.relu(d7))
# o = F.tanh(d8)
return d8
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()