-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_icon.py
605 lines (546 loc) · 30 KB
/
run_icon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import random
import time
import argparse
import shutil
import os
import torch
import numpy as np
from sam import SAM
from torch.optim import SGD
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import common.vision.datasets as datasets
import common.vision.models as models
from common.utils.analysis import collect_feature
from common.utils.data import ForeverDataIterator
from common.utils.metric import accuracy
from common.utils.meter import AverageMeter, ProgressMeter
from common.utils.logger import CompleteLogger
from validate import validate_model
from icon.uda_backbone import ImageClassifier
from icon.cluster import ClusterLoss, Normalize, BCE, PairEnum, reduce_dimension
from icon.icon_utils import Visualizer, TwoViewsTrainTransform, get_ulb_sim_matrix
from icon.eqinv import EqInv
from icon.entropy import TsallisEntropy
from icon.transform import TransformFixMatch, get_val_trainsform
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args):
args.log = os.path.join(args.log_root, args.exp_name)
logger = CompleteLogger(args.log, 'train')
print(args)
if args.seed is not None:
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(2023)
random.seed(2023)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# Data loading code
train_transform = TwoViewsTrainTransform(args.center_crop)
unlabeled_transform = TransformFixMatch()
val_transform = get_val_trainsform()
dataset = datasets.__dict__[args.data]
train_source_dataset = dataset(root=args.root, task=args.source, download=True, transform=train_transform)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
val_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=False)
train_target_dataset = dataset(root=args.root, task=args.target, download=True, transform=unlabeled_transform)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
val_dataset = dataset(root=args.root, task=args.target, download=True, transform=val_transform)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
source_seq_loader = DataLoader(train_source_dataset, batch_size=args.batch_size * 8,
shuffle=False, num_workers=args.workers * 8, drop_last=False) # for dim reduction
target_seq_loader = DataLoader(train_target_dataset, batch_size=args.batch_size * 8,
shuffle=False, num_workers=args.workers * 8, drop_last=False) # for dim reduction
test_loader = val_loader
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# create model and loss
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
num_classes = train_source_dataset.num_classes
args.num_cls = num_classes
classifier = ImageClassifier(
backbone, num_classes, bottleneck_dim=args.bottleneck_dim
).to(device)
# define optimizer and lr scheduler
base_optimizer = SGD
if args.optim == 'sam':
optimizer = SAM(
classifier.get_parameters(), base_optimizer, lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay,
adaptive = True, rho = args.rho
)
else:
optimizer = SGD(
classifier.get_parameters(), lr=args.lr,
weight_decay=args.weight_decay, momentum=args.momentum
)
lr_scheduler = LambdaLR(optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x)) ** (-args.lr_decay))
# define loss function
ts_loss = TsallisEntropy(temperature=args.temperature, alpha=args.alpha) # following CST
cluster_loss = ClusterLoss(device, num_classes, "RK", -1, args.topk)
disentanglement_loss = EqInv(num_classes, temperature=0.07, memory_length_per_class=500)
# Visualizer
visualizer = Visualizer(args.log_root, args.exp_name)
# start training
best_acc1 = 0.
for epoch in range(args.epochs):
print("lr:", lr_scheduler.get_last_lr()[0])
# train for one epoch
train(
train_source_iter, train_target_iter, classifier, ts_loss, optimizer,
lr_scheduler, epoch, args, cluster_loss, disentanglement_loss, visualizer,
loaders={"s_seq": source_seq_loader, "t_seq": target_seq_loader,
"s": train_source_loader, "t": train_target_loader}
)
# evaluate on validation set
acc1 = validate_model(val_loader, val_source_loader, classifier, args, device, str(epoch))
visualizer.plot_items({"target accuracy": acc1,})
# remember best acc@1 and save checkpoint
torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest'))
if acc1 > best_acc1:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_acc1 = max(acc1, best_acc1)
print("best_acc1 = {:3.1f}".format(best_acc1))
# evaluate on test set
classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best')))
acc1 = validate_model(test_loader, val_source_loader, classifier, args, device, "best")
print("test_acc1 = {:3.1f}".format(acc1))
logger.close()
return best_acc1, logger
def train(train_source_iter: ForeverDataIterator, train_target_iter: ForeverDataIterator,
model: ImageClassifier, ts: TsallisEntropy, optimizer: SGD,
lr_scheduler: LambdaLR, epoch: int, args: argparse.Namespace,
cluster_loss: ClusterLoss, disentangle_loss: EqInv,
visualizer:Visualizer, loaders=None):
batch_time = AverageMeter('Time', ':3.1f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
cluster_losses = AverageMeter('Cluster Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
bce = BCE()
w_cluster = 1.0
w_eqinv = 1.0 if args.eqinv else 0.0
w_transfer = args.w_transfer
w_erm = 1.0
w_con = 1.0 if epoch >= args.con_start_epoch else 0.0
w_inv = args.w_inv if epoch >= args.inv_start_epoch else 0.0
w_st = args.w_st
w_st2 = 0.5
back_cluster = True if epoch >= args.back_cluster_start_epoch else False
print("EqInv=%.2f, ERM=%.2f, Self training=%.2f, Others=t%.2f-c%.2f-ba%d"
% (w_eqinv, w_erm, w_st, w_transfer, w_con, int(back_cluster)))
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, cluster_losses, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# dimensionality reduction
use_dim_reduce = (args.dim_reduction != 'none')
if use_dim_reduce:
s_loader = loaders["s_seq"]
t_loader = loaders["t_seq"]
source_feature1, _, labels_s = collect_feature(s_loader, model.backbone, device, None)
target_feature1, _, labels_t = collect_feature(t_loader, model.backbone, device, None)
num_s = len(source_feature1)
features = torch.cat((source_feature1, target_feature1), dim=0).cpu().numpy()
transformed_features, _ = reduce_dimension(features, args.dim_reduction, args.reduced_dim)
tf_s = transformed_features[:num_s, :]
tf_t = transformed_features[num_s:, :]
# switch to train mode
model.train()
l2norm = Normalize(2)
end = time.time()
for i in range(args.iters_per_epoch):
current_iters = epoch * args.iters_per_epoch + i
(x_s, x_s_u), labels_s, meta_s = next(train_source_iter)
(x_t, x_t_u), labels_t, meta_t = next(train_target_iter)
x_s_u = x_s_u.to(device)
x_s = x_s.to(device)
x_t = x_t.to(device)
x_t_u = x_t_u.to(device)
labels_s = labels_s.to(device)
labels_t = labels_t.to(device)
labels_t_scrambled = torch.ones_like(labels_t).to(device) + cluster_loss.num_classes
# measure data loading time
data_time.update(time.time() - end)
######### 1. compute output
x = torch.cat((x_s, x_t), dim=0)
x_u = torch.cat((x_s_u, x_t_u), dim=0)
o = model(x)
o_u = model(x_u)
######### 2. process output
y, y_alt, y_nograd, y_alt_nograd =\
o["y"], o["y_cluster_all"], o["y_nograd"], o["y_cluster_all_nograd"]
f, bf = o["feature"], o["bottleneck_feature"]
y_u, y_u_alt, y_u_nograd, y_u_alt_nograd =\
o_u["y"], o_u["y_cluster_all"], o_u["y_nograd"], o_u["y_cluster_all_nograd"]
f_u, bf_u = o_u["feature"], o_u["bottleneck_feature"]
f_s, f_t = f.chunk(2, dim=0) # Weak Aug: label features, unlabel features
f_s_u, f_t_u = f_u.chunk(2, dim=0) # Strong Aug: label features, unlabel features
y_s, y_t = y.chunk(2, dim=0) # Weak Aug, cls head: label preds, unlabel preds
y_s_u, y_t_u = y_u.chunk(2, dim=0) # Strong Aug, cls head: label preds, unlabel preds
y_s_alt, y_t_alt = y_alt.chunk(2, dim=0) # Weak Aug, eqinv head: label preds, unlabel preds
y_s_u_alt, y_t_u_alt = y_u_alt.chunk(2, dim=0) # Strong Aug, eqinv head: label preds, unlabel preds
bf_s, bf_t = bf.chunk(2, dim=0) # Weak Aug: label bottleneck features, unlabel bottleneck features
bf_s_u, bf_t_u = bf_u.chunk(2, dim=0) # Strong Aug: label bottleneck features, unlabel bottleneck features
# Nograd outputs
y_s_nograd, y_t_nograd = y_nograd.chunk(2, dim=0) # Weak Aug, cls head: label preds, unlabel preds (nograd)
y_s_u_nograd, y_t_u_nograd = y_u_nograd.chunk(2, dim=0) # Strong Aug, cls head: label preds, unlabel preds (nograd)
y_s_alt_nograd, y_t_alt_nograd = y_alt_nograd.chunk(2, dim=0) # Weak Aug, eqinv head: label preds, unlabel preds (nograd)
y_s_u_alt_nograd, y_t_u_alt_nograd = y_u_alt_nograd.chunk(2, dim=0) # Strong Aug, eqinv head: label preds, unlabel preds (nograd)
# dimension reduction
if use_dim_reduce:
idx_s = meta_s['index']
idx_t = meta_t['index']
f_s_reduce = torch.from_numpy(tf_s[idx_s, :]).to(device)
f_t_reduce = torch.from_numpy(tf_t[idx_t, :]).to(device)
f_s_cluster = f_s_reduce
f_t_cluster = f_t_reduce
else:
f_s_cluster = f_s
f_t_cluster = f_t
# U only cluster outputs
y_alt2, y_alt2_nograd = o["y_cluster_u"], o["y_cluster_u_nograd"]
y_u_alt2, y_u_alt2_nograd = o_u["y_cluster_u"], o_u["y_cluster_u_nograd"]
y_s_alt2, y_t_alt2 = y_alt2.chunk(2, dim=0) # Weak Aug, cluster head: label preds, unlabel preds
y_s_u_alt2, y_t_u_alt2 = y_u_alt2.chunk(2, dim=0) # Strong Aug, cluster head: label preds, unlabel preds
y_s_alt2_nograd, _ = y_alt2_nograd.chunk(2, dim=0) # Weak Aug, cluster head: label preds, unlabel preds (nograd)
y_s_u_alt2_nograd, _ = y_u_alt2_nograd.chunk(2, dim=0) # Strong Aug, cluster head: label preds, unlabel preds (nograd)
######### 3. generate target pseudo-labels
max_prob, pseudo_labels = torch.max(F.softmax(y_t, dim=-1), dim=-1)
max_prob_alt, _ = torch.max(F.softmax(y_t_alt, dim=-1), dim=-1)
######### ERM loss
cls_loss = F.cross_entropy(y_s, labels_s)
######### self training loss
st_loss = (F.cross_entropy(y_t_u, pseudo_labels, reduction='none')
* max_prob.ge(args.threshold).float().detach()).mean()
########## Entropy Loss
transfer_loss = ts(y_t)
######### EqInv loss
preds1_u = torch.cat((y_s_alt_nograd, y_t_alt_nograd), dim=0)
preds2_u = torch.cat((y_s_u_alt_nograd, y_t_u_alt_nograd), dim=0)
inputs = {
"x1": torch.cat((f_s_cluster, f_t_cluster), dim=0),
"preds1_u": preds1_u,
"preds2_u": preds2_u,
"labels": torch.cat((labels_s, labels_t_scrambled), dim=0),
}
bce_loss, _ = cluster_loss.compute_losses(inputs) # Cluster loss (for EqInv cluster head if applicable)
clusters_s_prob = F.softmax(y_s_alt, dim=-1)
# NOTE: NEED TO SPECIFY update_memory=False IN THE SECOND BACKWARD
if args.eqinv:
eqinv_loss, eqinv_loss2 = disentangle_loss(
x_s=torch.cat((bf_s.unsqueeze(1), bf_s_u.unsqueeze(1)), dim=1),
labels_s=labels_s,
clusters_s=clusters_s_prob,
x_t=torch.cat((bf_t.unsqueeze(1), bf_t_u.unsqueeze(1)), dim=1),
update_memory=True
)
else:
eqinv_loss, eqinv_loss2 = 0.0, 0.0
######### ICON
p_t_nograd = F.softmax(y_t_nograd, dim=1)
p_t_u_nograd = F.softmax(y_t_u_nograd, dim=1)
p_s_alt_nograd = F.softmax(y_s_alt2_nograd, dim=1)
p_s_u_alt_nograd = F.softmax(y_s_u_alt2_nograd, dim=1)
inputs = {
"x1": torch.cat((f_s_cluster, f_t_cluster), dim=0),
"preds1_u": y_alt2 if back_cluster else y_alt2_nograd,
"preds2_u": y_u_alt2 if back_cluster else y_u_alt2_nograd,
"labels": torch.cat((labels_s, labels_t_scrambled), dim=0),
}
######## Cluster loss (for target domain clustering)
bce_loss_u, sim_matrix_ulb = cluster_loss.compute_losses(inputs)
bce_loss += bce_loss_u
max_prob_alt2, pseudo_labels_alt2 = torch.max(F.softmax(y_t_alt2, dim=1), dim=-1)
st_loss_cluster = (F.cross_entropy(y_t_u_alt2, pseudo_labels_alt2,
reduction='none') * max_prob_alt2.ge(args.threshold).float().detach()).mean()
# Refine unlabel similarity matrix (filter out uncertain pairs)
cluster_logits = y_t_alt2
sim_matrix_ulb_refined, low_t, high_t = get_ulb_sim_matrix(
args.con_mode, sim_matrix_ulb, cluster_logits,
)
# classification head consistent with u clusters
pairs1, _ = PairEnum(p_t_nograd)
_, pairs2 = PairEnum(p_t_u_nograd)
con_loss_u = bce(pairs1, pairs2, sim_matrix_ulb_refined)
# cluster head consistent with s labels (to improve clustering)
labels_s_view = labels_s.contiguous().view(-1, 1)
sim_matrix_lb = torch.eq(labels_s_view, labels_s_view.T).float().to(device)
sim_matrix_lb = (sim_matrix_lb - 0.5) * 2.0 # same label=1.0, diff label=-1.0
pairs1, _ = PairEnum(p_s_alt_nograd)
_, pairs2 = PairEnum(p_s_u_alt_nograd)
con_loss_s = bce(pairs1, pairs2, sim_matrix_lb.flatten())
########### Consistency loss
con_loss = con_loss_u + con_loss_s
########### Invariant loss
sim_matrix_ulb_full, _, _ = get_ulb_sim_matrix(
'stats', sim_matrix_ulb, cluster_logits, update_list=(args.con_mode=='stats')
) # get full ulb pairwise labels for invariant loss
p_t, p_t_u = F.softmax(y_t, dim=1), F.softmax(y_t_u, dim=1)
pairs1, _ = PairEnum(p_t)
_, pairs2 = PairEnum(p_t_u)
irm_con_t = bce(pairs1, pairs2, sim_matrix_ulb_full)
p_s, p_s_u = F.softmax(y_s, dim=1), F.softmax(y_s_u, dim=1)
pairs1, _ = PairEnum(p_s)
_, pairs2 = PairEnum(p_s_u)
irm_con_s = bce(pairs1, pairs2, sim_matrix_lb.flatten())
inv_loss = torch.var(torch.stack([irm_con_t, irm_con_s]))
loss = w_transfer * transfer_loss\
+ w_cluster * bce_loss\
+ w_eqinv * (eqinv_loss + eqinv_loss2)\
+ w_erm * cls_loss\
+ w_con * con_loss\
+ w_st * st_loss\
+ w_st2 * st_loss_cluster\
+ w_inv * inv_loss
cls_acc = accuracy(y_s, labels_s)[0]
losses.update(loss.item(), x_s.size(0))
cluster_losses.update(bce_loss.item(), x_s.size(0))
cls_accs.update(cls_acc.item(), x_s.size(0))
loss_dict = {
"total loss": loss,
"transfer loss": transfer_loss,
"bce loss": bce_loss,
"erm loss": cls_loss,
"consistency loss": con_loss,
"self-training loss": st_loss,
"confident ratio": max_prob.ge(args.threshold).float().mean(),
"inv loss": inv_loss
}
visualizer.plot_items(loss_dict)
visualizer.tick()
# compute gradient and do the first SGD step
loss.backward()
if args.optim == 'sam':
optimizer.first_step(zero_grad=True)
else:
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
if args.optim == 'sam':
# compute gradient and do the second SGD step, code same with 1st step
o = model(x)
o_u = model(x_u)
y, y_alt, y_nograd, y_alt_nograd =\
o["y"], o["y_cluster_all"], o["y_nograd"], o["y_cluster_all_nograd"]
f, bf = o["feature"], o["bottleneck_feature"]
y_u, y_u_alt, y_u_nograd, y_u_alt_nograd =\
o_u["y"], o_u["y_cluster_all"], o_u["y_nograd"], o_u["y_cluster_all_nograd"]
f_u, bf_u = o_u["feature"], o_u["bottleneck_feature"]
f_s, f_t = f.chunk(2, dim=0) # Weak Aug: label features, unlabel features
f_s_u, f_t_u = f_u.chunk(2, dim=0) # Strong Aug: label features, unlabel features
y_s, y_t = y.chunk(2, dim=0) # Weak Aug, source head: label preds, unlabel preds
y_s_u, y_t_u = y_u.chunk(2, dim=0) # Strong Aug, source head: label preds, unlabel preds
y_s_alt, y_t_alt = y_alt.chunk(2, dim=0) # Weak Aug, target head: label preds, unlabel preds
y_s_u_alt, y_t_u_alt = y_u_alt.chunk(2, dim=0) # Strong Aug, target head: label preds, unlabel preds
bf_s, bf_t = bf.chunk(2, dim=0) # Weak Aug: label bottleneck features, unlabel bottleneck features
bf_s_u, bf_t_u = bf_u.chunk(2, dim=0) # Strong Aug: label bottleneck features, unlabel bottleneck features
# Nograd outputs
y_s_nograd, y_t_nograd = y_nograd.chunk(2, dim=0) # Weak Aug, source head: label preds, unlabel preds
y_s_u_nograd, y_t_u_nograd = y_u_nograd.chunk(2, dim=0) # Strong Aug, source head: label preds, unlabel preds
y_s_alt_nograd, y_t_alt_nograd = y_alt_nograd.chunk(2, dim=0) # Weak Aug, target head: label preds, unlabel preds
y_s_u_alt_nograd, y_t_u_alt_nograd = y_u_alt_nograd.chunk(2, dim=0) # Strong Aug, target head: label preds, unlabel preds
# dimension reduction
if use_dim_reduce:
idx_s = meta_s['index']
idx_t = meta_t['index']
f_s_reduce = torch.from_numpy(tf_s[idx_s, :]).to(device)
f_t_reduce = torch.from_numpy(tf_t[idx_t, :]).to(device)
f_s_cluster = f_s_reduce
f_t_cluster = f_t_reduce
else:
f_s_cluster = f_s
f_t_cluster = f_t
# U only cluster outputs
y_alt2, y_alt2_nograd = o["y_cluster_u"], o["y_cluster_u_nograd"]
y_u_alt2, y_u_alt2_nograd = o_u["y_cluster_u"], o_u["y_cluster_u_nograd"]
y_s_alt2, y_t_alt2 = y_alt2.chunk(2, dim=0)
y_s_u_alt2, y_t_u_alt2 = y_u_alt2.chunk(2, dim=0)
y_s_alt2_nograd, _ = y_alt2_nograd.chunk(2, dim=0)
y_s_u_alt2_nograd, _ = y_u_alt2_nograd.chunk(2, dim=0)
max_prob, pseudo_labels = torch.max(F.softmax(y_t, dim=-1), dim=-1)
max_prob_alt, _ = torch.max(F.softmax(y_t_alt, dim=-1), dim=-1)
# CE + self training + entropy
cls_loss = F.cross_entropy(y_s, labels_s)
st_loss = (F.cross_entropy(y_t_u, pseudo_labels,
reduction='none') * max_prob.ge(args.threshold).float().detach()).mean()
transfer_loss = ts(y_t)
# Eqinv
preds1_u = torch.cat((y_s_alt_nograd, y_t_alt_nograd), dim=0)
preds2_u = torch.cat((y_s_u_alt_nograd, y_t_u_alt_nograd), dim=0)
inputs = {
"x1": torch.cat((f_s_cluster, f_t_cluster), dim=0),
"preds1_u": preds1_u,
"preds2_u": preds2_u,
"labels": torch.cat((labels_s, labels_t_scrambled), dim=0),
}
bce_loss, _ = cluster_loss.compute_losses(inputs)
clusters_s_prob = F.softmax(y_s_alt, dim=-1)
# NOTE: NEED TO SPECIFY update_memory=False IN THE SECOND BACKWARD
if args.eqinv:
eqinv_loss, eqinv_loss2 = disentangle_loss(
x_s=torch.cat((bf_s.unsqueeze(1), bf_s_u.unsqueeze(1)), dim=1),
labels_s=labels_s,
clusters_s=clusters_s_prob,
x_t=torch.cat((bf_t.unsqueeze(1), bf_t_u.unsqueeze(1)), dim=1),
update_memory=False
)
else:
eqinv_loss, eqinv_loss2 = 0.0, 0.0
# ICON
p_t_nograd = F.softmax(y_t_nograd, dim=1)
p_t_u_nograd = F.softmax(y_t_u_nograd, dim=1)
p_s_alt_nograd = F.softmax(y_s_alt2_nograd, dim=1)
p_s_u_alt_nograd = F.softmax(y_s_u_alt2_nograd, dim=1)
inputs = {
"x1": torch.cat((f_s_cluster, f_t_cluster), dim=0),
"preds1_u": y_alt2 if back_cluster else y_alt2_nograd,
"preds2_u": y_u_alt2 if back_cluster else y_u_alt2_nograd,
"labels": torch.cat((labels_s, labels_t_scrambled), dim=0),
}
######## Cluster loss (for target domain clustering)
bce_loss_u, sim_matrix_ulb = cluster_loss.compute_losses(inputs)
bce_loss += bce_loss_u
max_prob_alt2, pseudo_labels_alt2 = torch.max(F.softmax(y_t_alt2, dim=1), dim=-1)
st_loss_cluster = (F.cross_entropy(y_t_u_alt2, pseudo_labels_alt2,
reduction='none') * max_prob_alt2.ge(args.threshold).float().detach()).mean()
# Refine unlabel similarity matrix (filter out uncertain pairs)
cluster_logits = y_t_alt2
sim_matrix_ulb_refined, low_t, high_t = get_ulb_sim_matrix(
args.con_mode, sim_matrix_ulb, cluster_logits,
)
# classification head consistent with u clusters
pairs1, _ = PairEnum(p_t_nograd)
_, pairs2 = PairEnum(p_t_u_nograd)
con_loss_u = bce(pairs1, pairs2, sim_matrix_ulb_refined)
# cluster head consistent with s labels (to improve clustering)
labels_s_view = labels_s.contiguous().view(-1, 1)
sim_matrix_lb = torch.eq(labels_s_view, labels_s_view.T).float().to(device)
sim_matrix_lb = (sim_matrix_lb - 0.5) * 2.0 # same label=1.0, diff label=-1.0
pairs1, _ = PairEnum(p_s_alt_nograd)
_, pairs2 = PairEnum(p_s_u_alt_nograd)
con_loss_s = bce(pairs1, pairs2, sim_matrix_lb.flatten())
########### Consistency loss
con_loss = con_loss_u + con_loss_s
########### Invariant loss
sim_matrix_ulb_full, _, _ = get_ulb_sim_matrix(
'stats', sim_matrix_ulb, cluster_logits, update_list=(args.con_mode=='stats')
) # get full ulb pairwise labels for invariant loss
p_t, p_t_u = F.softmax(y_t, dim=1), F.softmax(y_t_u, dim=1)
pairs1, _ = PairEnum(p_t)
_, pairs2 = PairEnum(p_t_u)
irm_con_t = bce(pairs1, pairs2, sim_matrix_ulb_full)
p_s, p_s_u = F.softmax(y_s, dim=1), F.softmax(y_s_u, dim=1)
pairs1, _ = PairEnum(p_s)
_, pairs2 = PairEnum(p_s_u)
irm_con_s = bce(pairs1, pairs2, sim_matrix_lb.flatten())
inv_loss = torch.var(torch.stack([irm_con_t, irm_con_s]))
loss1 = w_transfer * transfer_loss\
+ w_cluster * bce_loss\
+ w_eqinv * (eqinv_loss + eqinv_loss2)\
+ w_erm * cls_loss\
+ w_con * con_loss\
+ w_st * st_loss\
+ w_st2 * st_loss_cluster\
+ w_inv * inv_loss
loss1.backward()
optimizer.second_step(zero_grad=True)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if __name__ == '__main__':
architecture_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
)
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
parser = argparse.ArgumentParser(description='ICON for Unsupervised Domain Adaptation')
# dataset parameters
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-d', '--data', metavar='DATA', default='Office31',
help='dataset: ' + ' | '.join(dataset_names) +
' (default: Office31)')
parser.add_argument('-s', '--source', help='source domain(s)')
parser.add_argument('-t', '--target', help='target domain(s)')
parser.add_argument('--center-crop', default=False, action='store_true',
help='whether use center crop during training')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=architecture_names,
help='backbone architecture: ' +
' | '.join(architecture_names) +
' (default: resnet18)')
parser.add_argument('--bottleneck-dim', default=256, type=int,
help='Dimension of bottleneck')
parser.add_argument('--temperature', default=2.0, type=float, help='parameter temperature scaling for entropy')
parser.add_argument('--alpha', default= 1.9, type=float,
help='the entropic index of Tsallis loss')
parser.add_argument('--threshold', default=0.97, type=float)
parser.add_argument('--rho', default=0.5, type=float,
help='optimizer rho',
dest='rho')
parser.add_argument("--load", type=str, default='best', help="Loading epoch for analysis/test. If none, load nothing (using pre-trained backbone)")
parser.add_argument("--analysis-model", type=str, default='', help="Loading epoch for analysis/test. If none, load nothing (using pre-trained backbone)")
# training parameters
parser.add_argument('-b', '--batch-size', default=24, type=int,
metavar='N',
help='mini-batch size (default: 28)')
parser.add_argument('--lr', '--learning-rate', default=0.005, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--lr-gamma', default=0.001, type=float, help='parameter for lr scheduler')
parser.add_argument('--lr-decay', default=0.75, type=float, help='parameter for lr scheduler')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-3, type=float,
metavar='W', help='weight decay (default: 1e-3)',
dest='weight_decay')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=1000, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--per-class-eval', action='store_true',
help='whether output per-class accuracy during evaluation')
parser.add_argument("--log-root", type=str, default='.log',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--exp-name", type=str, default='',
help="Experiment names.")
# Self-training
parser.add_argument('--w-transfer', default=1.0, type=float, help='weight of transfer loss')
parser.add_argument('--w-st', default=1.0, type=float, help='weight of self training loss')
# Clustering
parser.add_argument('--back-cluster-start-epoch', default=100, type=int, help='starting epoch to back cluster loss')
parser.add_argument('--topk', default=5, type=int, help='rank statistics threshold for clustering')
parser.add_argument("--optim", type=str, default='sam', help="Optimizer type for training and analysis.")
parser.add_argument('--eqinv', action='store_true', help='Use eqinv')
parser.add_argument('--dim-reduction', type=str, default='none', help='mode of dimension reduction for feature (used for clustering)')
parser.add_argument('--reduced-dim', type=int, default=50, help='dim reduction dimension')
# Consistency
parser.add_argument('--con-start-epoch', default=100, type=int, help='starting epoch to use compat loss')
parser.add_argument('--con-mode', type=str, default='stats', help='gt | stats | sim')
# Invariance
parser.add_argument('--w-inv', default=0.0, type=float, help='weight of compatibility irm loss')
parser.add_argument('--inv-start-epoch', default=100, type=int, help='starting epoch to use compat loss')
args = parser.parse_args()
print("Running experiment %s." % args.exp_name)
_, logger = main(args)
logger.logger.close_terminal()