Skip to content

[AAAI'22] FedProto: Federated Prototype Learning across Heterogeneous Clients

Notifications You must be signed in to change notification settings

yuetan031/FedProto

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FedProto: Federated Prototype Learning across Heterogeneous Clients

Implementation of the paper accepted by AAAI 2022 : FedProto: Federated Prototype Learning across Heterogeneous Clients.

Requirments

This code requires the following:

  • Python 3.6 or greater
  • PyTorch 1.6 or greater
  • Torchvision
  • Numpy 1.18.5

Data Preparation

Running the experiments

The baseline experiment trains the model in the conventional way.

  • To train the FedProto on MNIST with n=3, k=100 under statistical heterogeneous setting:
python federated_main.py --mode task_heter --dataset mnist --num_classes 10 --num_users 20 --ways 3 --shots 100 --stdev 2 --rounds 100 --train_shots_max 110 --ld 1
  • To train the FedProto on FEMNIST with n=4, k=100 under both statistical and model heterogeneous setting:
python federated_main.py --mode model_heter --dataset femnist --num_classes 62 --num_users 20 --ways 4 --shots 100 --stdev 2 --rounds 120 --train_shots_max 110 --ld 1
  • To train the FedProto on CIFAR10 with n=5, k=100 under statistical heterogeneous setting:
python federated_main.py --mode task_heter --dataset cifar10 --num_classes 10 --num_users 20 --ways 5 --shots 100 --stdev 2 --rounds 110 --train_shots_max 110 --ld 0.1 --local_bs 32

You can change the default values of other parameters to simulate different conditions. Refer to the options section.

Options

The default values for various paramters parsed to the experiment are given in options.py. Details are given some of those parameters:

  • --dataset: Default: 'mnist'. Options: 'mnist', 'femnist', 'cifar10'
  • --num_classes: Default: 10. Options: 10, 62, 10
  • --mode: Default: 'task_heter'. Options: 'task_heter', 'model_heter'
  • --seed: Random Seed. Default set to 1234.
  • --lr: Learning rate set to 0.01 by default.
  • --momentum: Learning rate set to 0.5 by default.
  • --local_bs: Local batch size set to 4 by default.
  • --verbose: Detailed log outputs. Activated by default, set to 0 to deactivate.

Federated Parameters

  • --mode: Default: 'task_heter'. Options: 'task_heter', 'model_heter'
  • --num_users:Number of users. Default is 20.
  • --ways: Average number of local classes. Default is 3.
  • --shots: Average number of samples for each local class. Default is 100.
  • --test_shots: Average number of test samples for each local class. Default is 15.
  • --ld: Weight of proto loss. Default is 1.
  • --stdev: Standard deviation. Default is 1.
  • --train_ep: Number of local training epochs in each user. Default is 1.

Citation

If you find this project helpful, please consider to cite the following paper:

@inproceedings{tan2021fedproto,
  title={FedProto: Federated Prototype Learning across Heterogeneous Clients},
  author={Tan, Yue and Long, Guodong and Liu, Lu and Zhou, Tianyi and Lu, Qinghua and Jiang, Jing and Zhang, Chengqi},
  booktitle={AAAI Conference on Artificial Intelligence},
  year={2022}
}

About

[AAAI'22] FedProto: Federated Prototype Learning across Heterogeneous Clients

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published