Skip to content

Latest commit

 

History

History
91 lines (64 loc) · 2.54 KB

README.md

File metadata and controls

91 lines (64 loc) · 2.54 KB

Vision Transformer with Progressive Sampling

This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Visual Parser

Installation Instructions

  • Clone this repo:
git clone git@github.com:yuexy/PS-ViT.git
cd PS-ViT
  • Create a conda virtual environment and activate it:
conda create -n ps_vit python=3.7 -y
conda activate ps_vit
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install timm==0.3.4, einops, pyyaml:
pip3 install timm=0.3.4, einops, pyyaml
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install PS-ViT:
python setup.py build_ext --inplace

Results and Models

All models listed below are evaluated with input size 224x224

Model Top1 Acc #params FLOPS Download
PS-ViT-Ti/14 75.6 4.8M 1.6G Coming Soon
PS-ViT-B/10 80.6 21.3M 3.1G Coming Soon
PS-ViT-B/14 81.7 21.3M 5.4G Google Drive
PS-ViT-B/18 82.3 21.3M 8.8G Google Drive

Evaluation

To evaluate a pre-trained PS-ViT on ImageNet val, run:

python3 main.py <data-root> --model <model-name> -b <batch-size> --eval_checkpoint <path-to-checkpoint>

Training from scratch

To train a PS-ViT on ImageNet from scratch, run:

bash ./scripts/train_distributed.sh <job-name> <config-path> <num-gpus>

Citing PS-ViT

@article{psvit,
  title={Vision Transformer with Progressive Sampling},
  author={Yue, Xiaoyu and Sun, Shuyang and Kuang, Zhanghui and Wei, Meng and Torr, Philip and Zhang, Wayne and Lin, Dahua},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

Contact

If you have any questions, don't hesitate to contact Xiaoyu Yue. You can easily reach him by sending an email to yuexiaoyu002@gmail.com.