-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain_blink_lrcn.py
65 lines (57 loc) · 2.22 KB
/
train_blink_lrcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking
IEEE International Workshop on Information Forensics and Security (WIFS), 2018
Yuezun Li, Ming-ching Chang and Siwei Lyu
"""
from blink_net import BlinkLRCN
from solver import Solver
import tensorflow as tf
import numpy as np
from proc_data.seq_data import SeqData
import py_utils.vis_utils.vis as uvis
from pprint import pprint
def main():
with tf.Session() as sess:
# Build network
net = BlinkLRCN(is_train=True)
net.build()
# Init solver
solver = Solver(sess=sess, net=net, mode='lrcn')
solver.init()
# Eye state data generator
data_gen = SeqData(
anno_path='sample_sq_data/train.p',
data_dir='sample_sq_data/',
batch_size=net.cfg.TRAIN.BATCH_SIZE,
max_seq_len=net.cfg.MAX_TIME,
is_augment=True,
is_shuffle=True
)
print('Training...')
# Training
batch_num = data_gen.batch_num
summary_idx = 0
for epoch in range(solver.cfg.TRAIN.NUM_EPOCH):
for i in range(batch_num):
seq_tensor, len_list, scores_list, state_list, label_list, seq_name_list \
= data_gen.get_batch(i, size=net.cfg.IMG_SIZE[:2])
uvis.vis_seq(seq_tensor, len_list, 'tmp')
_, summary, prob, net_loss = solver.train(seq_tensor, len_list, state_list)
pred_state_list = np.argmax(prob, axis=-1)
solver.writer.add_summary(summary, summary_idx)
summary_idx += 1
list_1, list_2 = [], []
for j, L in enumerate(len_list):
list_1.append(state_list[j][:L])
list_2.append(pred_state_list[j][:L])
print('====================================')
print('Net loss: {}'.format(net_loss))
print('Real state:')
pprint(list_1)
print('Pred state:')
pprint(list_2)
print('epoch: {}, batch_idx: {}'.format(epoch, i))
if epoch % solver.cfg.TRAIN.SAVE_INTERVAL == 0:
solver.save(epoch)
if __name__ == '__main__':
main()