-
Notifications
You must be signed in to change notification settings - Fork 97
/
train.py
160 lines (136 loc) · 6.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
Train a model on TACRED.
"""
import os
from datetime import datetime
import time
import numpy as np
import random
import argparse
from shutil import copyfile
import torch
import torch.nn as nn
import torch.optim as optim
from data.loader import DataLoader
from model.rnn import RelationModel
from utils import scorer, constant, helper
from utils.vocab import Vocab
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='dataset/tacred')
parser.add_argument('--vocab_dir', type=str, default='dataset/vocab')
parser.add_argument('--emb_dim', type=int, default=300, help='Word embedding dimension.')
parser.add_argument('--ner_dim', type=int, default=30, help='NER embedding dimension.')
parser.add_argument('--pos_dim', type=int, default=30, help='POS embedding dimension.')
parser.add_argument('--hidden_dim', type=int, default=200, help='RNN hidden state size.')
parser.add_argument('--num_layers', type=int, default=2, help='Num of RNN layers.')
parser.add_argument('--dropout', type=float, default=0.5, help='Input and RNN dropout rate.')
parser.add_argument('--word_dropout', type=float, default=0.04, help='The rate at which randomly set a word to UNK.')
parser.add_argument('--topn', type=int, default=1e10, help='Only finetune top N embeddings.')
parser.add_argument('--lower', dest='lower', action='store_true', help='Lowercase all words.')
parser.add_argument('--no-lower', dest='lower', action='store_false')
parser.set_defaults(lower=False)
parser.add_argument('--attn', dest='attn', action='store_true', help='Use attention layer.')
parser.add_argument('--no-attn', dest='attn', action='store_false')
parser.set_defaults(attn=True)
parser.add_argument('--attn_dim', type=int, default=200, help='Attention size.')
parser.add_argument('--pe_dim', type=int, default=30, help='Position encoding dimension.')
parser.add_argument('--lr', type=float, default=1.0, help='Applies to SGD and Adagrad.')
parser.add_argument('--lr_decay', type=float, default=0.9)
parser.add_argument('--optim', type=str, default='sgd', help='sgd, adagrad, adam or adamax.')
parser.add_argument('--num_epoch', type=int, default=30)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--max_grad_norm', type=float, default=5.0, help='Gradient clipping.')
parser.add_argument('--log_step', type=int, default=20, help='Print log every k steps.')
parser.add_argument('--log', type=str, default='logs.txt', help='Write training log to file.')
parser.add_argument('--save_epoch', type=int, default=5, help='Save model checkpoints every k epochs.')
parser.add_argument('--save_dir', type=str, default='./saved_models', help='Root dir for saving models.')
parser.add_argument('--id', type=str, default='00', help='Model ID under which to save models.')
parser.add_argument('--info', type=str, default='', help='Optional info for the experiment.')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available())
parser.add_argument('--cpu', action='store_true', help='Ignore CUDA.')
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(1234)
if args.cpu:
args.cuda = False
elif args.cuda:
torch.cuda.manual_seed(args.seed)
# make opt
opt = vars(args)
opt['num_class'] = len(constant.LABEL_TO_ID)
# load vocab
vocab_file = opt['vocab_dir'] + '/vocab.pkl'
vocab = Vocab(vocab_file, load=True)
opt['vocab_size'] = vocab.size
emb_file = opt['vocab_dir'] + '/embedding.npy'
emb_matrix = np.load(emb_file)
assert emb_matrix.shape[0] == vocab.size
assert emb_matrix.shape[1] == opt['emb_dim']
# load data
print("Loading data from {} with batch size {}...".format(opt['data_dir'], opt['batch_size']))
train_batch = DataLoader(opt['data_dir'] + '/train.json', opt['batch_size'], opt, vocab, evaluation=False)
dev_batch = DataLoader(opt['data_dir'] + '/dev.json', opt['batch_size'], opt, vocab, evaluation=True)
model_id = opt['id'] if len(opt['id']) > 1 else '0' + opt['id']
model_save_dir = opt['save_dir'] + '/' + model_id
opt['model_save_dir'] = model_save_dir
helper.ensure_dir(model_save_dir, verbose=True)
# save config
helper.save_config(opt, model_save_dir + '/config.json', verbose=True)
vocab.save(model_save_dir + '/vocab.pkl')
file_logger = helper.FileLogger(model_save_dir + '/' + opt['log'], header="# epoch\ttrain_loss\tdev_loss\tdev_f1")
# print model info
helper.print_config(opt)
# model
model = RelationModel(opt, emb_matrix=emb_matrix)
id2label = dict([(v,k) for k,v in constant.LABEL_TO_ID.items()])
dev_f1_history = []
current_lr = opt['lr']
global_step = 0
global_start_time = time.time()
format_str = '{}: step {}/{} (epoch {}/{}), loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'
max_steps = len(train_batch) * opt['num_epoch']
# start training
for epoch in range(1, opt['num_epoch']+1):
train_loss = 0
for i, batch in enumerate(train_batch):
start_time = time.time()
global_step += 1
loss = model.update(batch)
train_loss += loss
if global_step % opt['log_step'] == 0:
duration = time.time() - start_time
print(format_str.format(datetime.now(), global_step, max_steps, epoch,\
opt['num_epoch'], loss, duration, current_lr))
# eval on dev
print("Evaluating on dev set...")
predictions = []
dev_loss = 0
for i, batch in enumerate(dev_batch):
preds, _, loss = model.predict(batch)
predictions += preds
dev_loss += loss
predictions = [id2label[p] for p in predictions]
dev_p, dev_r, dev_f1 = scorer.score(dev_batch.gold(), predictions)
train_loss = train_loss / train_batch.num_examples * opt['batch_size'] # avg loss per batch
dev_loss = dev_loss / dev_batch.num_examples * opt['batch_size']
print("epoch {}: train_loss = {:.6f}, dev_loss = {:.6f}, dev_f1 = {:.4f}".format(epoch,\
train_loss, dev_loss, dev_f1))
file_logger.log("{}\t{:.6f}\t{:.6f}\t{:.4f}".format(epoch, train_loss, dev_loss, dev_f1))
# save
model_file = model_save_dir + '/checkpoint_epoch_{}.pt'.format(epoch)
model.save(model_file, epoch)
if epoch == 1 or dev_f1 > max(dev_f1_history):
copyfile(model_file, model_save_dir + '/best_model.pt')
print("new best model saved.")
if epoch % opt['save_epoch'] != 0:
os.remove(model_file)
# lr schedule
if len(dev_f1_history) > 10 and dev_f1 <= dev_f1_history[-1] and \
opt['optim'] in ['sgd', 'adagrad']:
current_lr *= opt['lr_decay']
model.update_lr(current_lr)
dev_f1_history += [dev_f1]
print("")
print("Training ended with {} epochs.".format(epoch))