-
Notifications
You must be signed in to change notification settings - Fork 3
/
transforms.py
executable file
·201 lines (169 loc) · 6.15 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import torch
import random
import cv2
import torch.nn.functional as F
cv2.setNumThreads(1) # If not set, the training speed might be very slow in some circumstances.
class Scale(object):
"""
Resize the given image to a fixed scale
"""
def __init__(self, wi, he):
'''
:param wi: width after resizing
:param he: height after reszing
'''
self.w = wi
self.h = he
def __call__(self, img, label):
'''
:param img: RGB image
:param label: semantic label image
:return: resized images
'''
# bilinear interpolation for RGB image
img = cv2.resize(img, (self.w, self.h))
# nearest neighbour interpolation for label image
label = cv2.resize(label, (self.w, self.h), interpolation=cv2.INTER_NEAREST)
return [img, label]
class Resize(object):
def __init__(self, min_size, max_size, strict=False):
if not isinstance(min_size, (list, tuple)):
min_size = (min_size,)
self.min_size = min_size
self.max_size = max_size
self.strict = strict
# modified from torchvision to add support for max size
def get_size(self, image_size):
w, h = image_size
if not self.strict:
size = random.choice(self.min_size)
max_size = self.max_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
else:
if w < h:
return (self.max_size, self.min_size[0])
else:
return (self.min_size[0], self.max_size)
def __call__(self, image, label):
size = self.get_size(image.shape[:2])
#print("origin", image.shape)
image = cv2.resize(image, size)
#print("resized", image.shape)
label = cv2.resize(label, size, interpolation=cv2.INTER_NEAREST)
return (image, label)
class RandomCropResize(object):
"""
Randomly crop and resize the given image with a probability of 0.5
"""
def __init__(self, crop_area):
'''
:param crop_area: area to be cropped (this is the max value and we select between 0 and crop area
'''
self.cw = crop_area
self.ch = crop_area
def __call__(self, img, label):
if random.random() < 0.5:
h, w = img.shape[:2]
x1 = random.randint(0, self.ch)
y1 = random.randint(0, self.cw)
img_crop = img[y1:h-y1, x1:w-x1]
label_crop = label[y1:h-y1, x1:w-x1]
img_crop = cv2.resize(img_crop, (w, h))
label_crop = cv2.resize(label_crop, (w, h), interpolation=cv2.INTER_NEAREST)
return [img_crop, label_crop]
else:
return [img, label]
class RandomFlip(object):
"""
Randomly flip the given Image with a probability of 0.5
"""
def __call__(self, image, label):
if random.random() < 0.5:
x1 = 0 #random.randint(0, 1) # if you want to do vertical flip, uncomment this line
if x1 == 0:
image = cv2.flip(image, 0) # horizontal flip
label = cv2.flip(label, 0) # horizontal flip
else:
image = cv2.flip(image, 1) # veritcal flip
label = cv2.flip(label, 1) # veritcal flip
return [image, label]
class Normalize(object):
"""
Given mean: (B, G, R) and std: (B, G, R),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
"""
def __init__(self, mean, std):
'''
:param mean: global mean computed from dataset
:param std: global std computed from dataset
'''
self.mean = mean
self.std = std
def __call__(self, image, label):
image = image.astype(np.float32)
image = image / 255
label = label / 255
image = (image - self.mean) / self.std
return [image, label]
class GaussianNoise(object):
def __init__(self, std=0.05):
'''
:param mean: global mean computed from dataset
:param std: global std computed from dataset
'''
self.std = std
def __call__(self, image, label):
noise = np.random.normal(loc=0, scale=self.std, size=image.shape)
image = image + noise.astype(np.float32)
return [image, label]
class ToTensor(object):
'''
This class converts the data to tensor so that it can be processed by PyTorch
'''
def __init__(self, scale=1, BGR=False):
'''
:param scale: set this parameter according to the output scale
'''
self.scale = scale
self.BGR = BGR
self.use_BGR_flag = 0
def __call__(self, image, label):
if self.scale != 1:
h, w = label.shape[:2]
image = cv2.resize(image, (int(w), int(h)))
label = cv2.resize(label, (int(w/self.scale), int(h/self.scale)), \
interpolation=cv2.INTER_NEAREST)
if not self.BGR:
image = image[:, :, ::-1].copy() # .copy() is to solve "torch does not support negative index"
if self.use_BGR_flag == 0 and self.BGR:
self.use_BGR_flag = 1;
print("using BGR mode input data!")
image = image.transpose((2, 0, 1))
image_tensor = torch.from_numpy(image)
label_tensor = torch.LongTensor(np.array(label, dtype=np.int))
return [image_tensor, label_tensor]
class Compose(object):
"""
Composes several transforms together.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
for t in self.transforms:
args = t(*args)
return args