forked from emersion/libliftoff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalloc.c
740 lines (633 loc) · 19.7 KB
/
alloc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "log.h"
#include "private.h"
/* Plane allocation algorithm
*
* Goal: KMS exposes a set of hardware planes, user submitted a set of layers.
* We want to map as many layers as possible to planes.
*
* However, all layers can't be mapped to any plane. There are constraints,
* sometimes depending on driver-specific limitations or the configuration of
* other planes.
*
* The only way to discover driver-specific limitations is via an atomic test
* commit: we submit a plane configuration, and KMS replies whether it's
* supported or not. Thus we need to incrementally build a valid configuration.
*
* Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible
* with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will
* discover the solution by building the mapping one plane at a time. It first
* starts with plane 1: an atomic commit assigning layer 1 to plane 1 is
* submitted. It fails, because this isn't supported by the driver. Then layer
* 2 is assigned to plane 1 and the atomic test succeeds. We can go on and
* repeat the operation with plane 2. After exploring the whole tree, we end up
* with a valid allocation.
*
*
* layer 1 layer 1
* +---------> failure +---------> failure
* | |
* | |
* | |
* +---------+ | +---------+ |
* | | | layer 2 | | | layer 3 final allocation:
* | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2
* | | | | | plane 2 → layer 3
* +---------+ | +---------+
* |
* |
* | layer 3
* +---------> failure
*
*
* Note how layer 2 isn't considered for plane 2: it's already mapped to plane
* 1. Also note that branches are pruned as soon as an atomic test fails.
*
* In practice, the primary plane is treated separately. This is where layers
* that can't be mapped to any plane (e.g. layer 1 in our example) will be
* composited. The primary plane is the first that will be allocated. Then all
* other planes will be allocated, from the topmost one to the bottommost one.
*
* The "zpos" property (which defines ordering between layers/planes) is handled
* as a special case. If it's set on layers, it adds additional constraints on
* their relative ordering. If two layers intersect, their relative zpos needs
* to be preserved during plane allocation.
*
* Implementation-wise, the output_choose_layers function is called at each node
* of the tree. It iterates over layers, check constraints, performs an atomic
* test commit and calls itself recursively on the next plane.
*/
/* Global data for the allocation algorithm */
struct alloc_result {
drmModeAtomicReq *req;
uint32_t flags;
size_t planes_len;
struct liftoff_layer **best;
int best_score;
/* per-output */
bool has_composition_layer;
size_t non_composition_layers_len;
};
/* Transient data, arguments for each step */
struct alloc_step {
struct liftoff_list *plane_link; /* liftoff_plane.link */
size_t plane_idx;
struct liftoff_layer **alloc; /* only items up to plane_idx are valid */
int score; /* number of allocated layers */
int last_layer_zpos;
bool composited; /* per-output */
};
static void plane_step_init_next(struct alloc_step *step,
struct alloc_step *prev,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane;
struct liftoff_layer_property *zpos_prop;
plane = liftoff_container_of(prev->plane_link, plane, link);
step->plane_link = prev->plane_link->next;
step->plane_idx = prev->plane_idx + 1;
step->alloc = prev->alloc;
step->alloc[prev->plane_idx] = layer;
if (layer != NULL && layer == layer->output->composition_layer) {
assert(!prev->composited);
step->composited = true;
} else {
step->composited = prev->composited;
}
if (layer != NULL && layer != layer->output->composition_layer) {
step->score = prev->score + 1;
} else {
step->score = prev->score;
}
zpos_prop = NULL;
if (layer != NULL) {
zpos_prop = layer_get_property(layer, "zpos");
}
if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) {
step->last_layer_zpos = zpos_prop->value;
} else {
step->last_layer_zpos = prev->last_layer_zpos;
}
}
static bool is_layer_allocated(struct alloc_step *step,
struct liftoff_layer *layer)
{
size_t i;
/* TODO: speed this up with an array of bools indicating whether a layer
* has been allocated */
for (i = 0; i < step->plane_idx; i++) {
if (step->alloc[i] == layer) {
return true;
}
}
return false;
}
static bool has_composited_layer_over(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop == NULL) {
return false;
}
liftoff_list_for_each(other_layer, &output->layers, link) {
if (is_layer_allocated(step, other_layer)) {
continue;
}
other_zpos_prop = layer_get_property(other_layer, "zpos");
if (other_zpos_prop == NULL) {
continue;
}
if (layer_intersects(layer, other_layer) &&
other_zpos_prop->value > zpos_prop->value) {
return true;
}
}
return false;
}
static bool has_allocated_layer_over(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
ssize_t i;
struct liftoff_plane *other_plane;
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop == NULL) {
return false;
}
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
other_layer = step->alloc[i];
if (other_layer == NULL) {
continue;
}
other_zpos_prop = layer_get_property(other_layer, "zpos");
if (other_zpos_prop == NULL) {
continue;
}
/* Since plane zpos is descending, this means the other layer is
* supposed to be under but is mapped to a plane over the
* current one. */
if (zpos_prop->value > other_zpos_prop->value &&
layer_intersects(layer, other_layer)) {
return true;
}
}
return false;
}
static bool has_allocated_plane_under(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane, *other_plane;
ssize_t i;
plane = liftoff_container_of(step->plane_link, plane, link);
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
if (step->alloc[i] == NULL) {
continue;
}
if (plane->zpos >= other_plane->zpos &&
layer_intersects(layer, step->alloc[i])) {
return true;
}
}
return false;
}
bool check_layer_plane_compatible(struct alloc_step *step,
struct liftoff_layer *layer,
struct liftoff_plane *plane)
{
struct liftoff_output *output;
struct liftoff_layer_property *zpos_prop;
output = layer->output;
/* Skip this layer if already allocated */
if (is_layer_allocated(step, layer)) {
return false;
}
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop != NULL) {
if ((int)zpos_prop->value > step->last_layer_zpos &&
has_allocated_layer_over(output, step, layer)) {
/* This layer needs to be on top of the last
* allocated one */
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"layer zpos invalid",
(void *)layer, plane->id);
return false;
}
if ((int)zpos_prop->value < step->last_layer_zpos &&
has_allocated_plane_under(output, step, layer)) {
/* This layer needs to be under the last
* allocated one, but this plane isn't under the
* last one (in practice, since planes are
* sorted by zpos it means it has the same zpos,
* ie. undefined ordering). */
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"plane zpos invalid",
(void *)layer, plane->id);
return false;
}
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
has_composited_layer_over(output, step, layer)) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"has composited layer on top",
(void *)layer, plane->id);
return false;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
layer == layer->output->composition_layer) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"cannot put composition layer on "
"non-primary plane",
(void *)layer, plane->id);
return false;
}
return true;
}
bool check_alloc_valid(struct alloc_result *result, struct alloc_step *step)
{
/* If composition isn't used, we need to have allocated all
* layers. */
/* TODO: find a way to fail earlier, e.g. when the number of
* layers exceeds the number of planes. */
if (result->has_composition_layer && !step->composited &&
step->score != (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"Cannot skip composition: some layers "
"are missing a plane");
return false;
}
/* On the other hand, if we manage to allocate all layers, we
* don't want to use composition. We don't want to use the
* composition layer at all. */
if (step->composited &&
step->score == (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"Refusing to use composition: all layers "
"have been put in a plane");
return false;
}
/* TODO: check allocation isn't empty */
return true;
}
int output_choose_layers(struct liftoff_output *output,
struct alloc_result *result, struct alloc_step *step)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
int cursor, ret;
size_t remaining_planes;
struct alloc_step next_step;
device = output->device;
if (step->plane_link == &device->planes) { /* Allocation finished */
if (step->score > result->best_score &&
check_alloc_valid(result, step)) {
/* We found a better allocation */
liftoff_log(LIFTOFF_DEBUG,
"Found a better allocation with score=%d",
step->score);
result->best_score = step->score;
memcpy(result->best, step->alloc,
result->planes_len * sizeof(struct liftoff_layer *));
}
return 0;
}
plane = liftoff_container_of(step->plane_link, plane, link);
remaining_planes = result->planes_len - step->plane_idx;
if (result->best_score >= step->score + (int)remaining_planes) {
/* Even if we find a layer for all remaining planes, we won't
* find a better allocation. Give up. */
/* TODO: change remaining_planes to only count those whose
* possible CRTC match and which aren't allocated */
return 0;
}
cursor = drmModeAtomicGetCursor(result->req);
if (plane->layer != NULL) {
goto skip;
}
if ((plane->possible_crtcs & (1 << output->crtc_index)) == 0) {
goto skip;
}
liftoff_log(LIFTOFF_DEBUG,
"Performing allocation for plane %"PRIu32" (%zu/%zu)",
plane->id, step->plane_idx + 1, result->planes_len);
liftoff_list_for_each(layer, &output->layers, link) {
if (layer->plane != NULL || layer->force_composition) {
continue;
}
if (!layer_is_visible(layer)) {
continue;
}
if (!check_layer_plane_compatible(step, layer, plane)) {
continue;
}
/* Try to use this layer for the current plane */
liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32": "
"applying properties...",
(void *)layer, plane->id);
ret = plane_apply(plane, layer, result->req);
if (ret == -EINVAL) {
liftoff_log(LIFTOFF_DEBUG,
" Layer %p -> plane %"PRIu32": "
"incompatible properties",
(void *)layer, plane->id);
continue;
} else if (ret != 0) {
return ret;
}
ret = device_test_commit(device, result->req, result->flags);
if (ret == 0) {
liftoff_log(LIFTOFF_DEBUG,
" Layer %p -> plane %"PRIu32": success",
(void *)layer, plane->id);
/* Continue with the next plane */
plane_step_init_next(&next_step, step, layer);
ret = output_choose_layers(output, result, &next_step);
if (ret != 0) {
return ret;
}
} else if (ret != -EINVAL && ret != -ERANGE) {
return ret;
}
drmModeAtomicSetCursor(result->req, cursor);
}
skip:
/* Try not to use the current plane */
plane_step_init_next(&next_step, step, NULL);
ret = output_choose_layers(output, result, &next_step);
if (ret != 0) {
return ret;
}
drmModeAtomicSetCursor(result->req, cursor);
return 0;
}
static int apply_current(struct liftoff_device *device, drmModeAtomicReq *req)
{
struct liftoff_plane *plane;
int cursor, ret;
cursor = drmModeAtomicGetCursor(req);
liftoff_list_for_each(plane, &device->planes, link) {
ret = plane_apply(plane, plane->layer, req);
assert(ret != -EINVAL);
if (ret != 0) {
drmModeAtomicSetCursor(req, cursor);
return ret;
}
}
return 0;
}
static bool layer_needs_realloc(struct liftoff_layer *layer)
{
size_t i;
struct liftoff_layer_property *prop;
if (layer->changed) {
return true;
}
for (i = 0; i < layer->props_len; i++) {
prop = &layer->props[i];
if (prop->value == prop->prev_value) {
continue;
}
/* If FB_ID changes from non-zero to zero, we don't need to
* display this layer anymore, so we may be able to re-use its
* plane for another layer. If FB_ID changes from zero to
* non-zero, we might be able to find a plane for this layer.
* If FB_ID changes from non-zero to non-zero, we can try to
* re-use the previous allocation. */
if (strcmp(prop->name, "FB_ID") == 0) {
if (prop->value == 0 || prop->prev_value == 0) {
return true;
}
/* TODO: check format/modifier is the same? */
continue;
}
/* If the layer was or becomes completely transparent or
* completely opaque, we might be able to find a better
* allocation. Otherwise, we can keep the current one. */
if (strcmp(prop->name, "alpha") == 0) {
if (prop->value == 0 || prop->prev_value == 0 ||
prop->value == 0xFFFF || prop->prev_value == 0xFFFF) {
return true;
}
continue;
}
/* We should never need a re-alloc when IN_FENCE_FD or
* FB_DAMAGE_CLIPS changes. */
if (strcmp(prop->name, "IN_FENCE_FD") == 0 ||
strcmp(prop->name, "FB_DAMAGE_CLIPS") == 0) {
continue;
}
/* TODO: if CRTC_{X,Y,W,H} changed but intersection with other
* layers hasn't changed, don't realloc */
return true;
}
return false;
}
static int reuse_previous_alloc(struct liftoff_output *output,
drmModeAtomicReq *req, uint32_t flags)
{
struct liftoff_device *device;
struct liftoff_layer *layer;
int cursor, ret;
device = output->device;
if (output->layers_changed) {
return -EINVAL;
}
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_needs_realloc(layer)) {
return -EINVAL;
}
}
cursor = drmModeAtomicGetCursor(req);
ret = apply_current(device, req);
if (ret != 0) {
return ret;
}
ret = device_test_commit(device, req, flags);
if (ret != 0) {
drmModeAtomicSetCursor(req, cursor);
}
return ret;
}
static void mark_layers_clean(struct liftoff_output *output)
{
struct liftoff_layer *layer;
output->layers_changed = false;
liftoff_list_for_each(layer, &output->layers, link) {
layer_mark_clean(layer);
}
}
static void update_layers_priority(struct liftoff_device *device)
{
struct liftoff_output *output;
struct liftoff_layer *layer;
device->page_flip_counter++;
bool period_elapsed =
device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD;
if (period_elapsed) {
device->page_flip_counter = 0;
}
liftoff_list_for_each(output, &device->outputs, link) {
liftoff_list_for_each(layer, &output->layers, link) {
layer_update_priority(layer, period_elapsed);
}
}
}
static void log_reuse(struct liftoff_output *output)
{
if (output->alloc_reused_counter == 0) {
liftoff_log(LIFTOFF_DEBUG,
"Reusing previous plane allocation on output %p",
(void *)output);
}
output->alloc_reused_counter++;
}
static void log_no_reuse(struct liftoff_output *output)
{
liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %p",
(void *)output);
if (output->alloc_reused_counter != 0) {
liftoff_log(LIFTOFF_DEBUG,
"Stopped reusing previous plane allocation on "
"output %p (had reused it %d times)",
(void *)output, output->alloc_reused_counter);
output->alloc_reused_counter = 0;
}
}
static size_t non_composition_layers_length(struct liftoff_output *output)
{
struct liftoff_layer *layer;
size_t n;
n = 0;
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_is_visible(layer) &&
output->composition_layer != layer) {
n++;
}
}
return n;
}
int liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req,
uint32_t flags)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
struct alloc_result result;
struct alloc_step step;
size_t i;
int ret;
device = output->device;
update_layers_priority(device);
ret = reuse_previous_alloc(output, req, flags);
if (ret == 0) {
log_reuse(output);
return 0;
}
log_no_reuse(output);
output_log_layers(output);
/* Unset all existing plane and layer mappings. */
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer != NULL && plane->layer->output == output) {
plane->layer->plane = NULL;
plane->layer = NULL;
}
}
/* Disable all planes. Do it before building mappings to make sure not
to hit bandwidth limits because too many planes are enabled. */
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer == NULL) {
liftoff_log(LIFTOFF_DEBUG,
"Disabling plane %"PRIu32, plane->id);
ret = plane_apply(plane, NULL, req);
assert(ret != -EINVAL);
if (ret != 0) {
return ret;
}
}
}
result.req = req;
result.flags = flags;
result.planes_len = liftoff_list_length(&device->planes);
step.alloc = malloc(result.planes_len * sizeof(*step.alloc));
result.best = malloc(result.planes_len * sizeof(*result.best));
if (step.alloc == NULL || result.best == NULL) {
liftoff_log_errno(LIFTOFF_ERROR, "malloc");
return -ENOMEM;
}
/* For each plane, try to find a layer. Don't do it the other
* way around (ie. for each layer, try to find a plane) because
* some drivers want user-space to enable the primary plane
* before any other plane. */
result.best_score = -1;
memset(result.best, 0, result.planes_len * sizeof(*result.best));
result.has_composition_layer = output->composition_layer != NULL;
result.non_composition_layers_len =
non_composition_layers_length(output);
step.plane_link = device->planes.next;
step.plane_idx = 0;
step.score = 0;
step.last_layer_zpos = INT_MAX;
step.composited = false;
ret = output_choose_layers(output, &result, &step);
if (ret != 0) {
return ret;
}
liftoff_log(LIFTOFF_DEBUG,
"Found plane allocation for output %p with "
"score=%d:", (void *)output, result.best_score);
/* Apply the best allocation */
i = 0;
liftoff_list_for_each(plane, &device->planes, link) {
layer = result.best[i];
i++;
if (layer == NULL) {
continue;
}
liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32,
(void *)layer, plane->id);
assert(plane->layer == NULL);
assert(layer->plane == NULL);
plane->layer = layer;
layer->plane = plane;
}
ret = apply_current(device, req);
if (ret != 0) {
return ret;
}
free(step.alloc);
free(result.best);
mark_layers_clean(output);
return 0;
}