-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataset.py
213 lines (183 loc) · 7.08 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numbers
import os
import queue as Queue
import threading
from typing import Iterable
import mxnet as mx
import numpy as np
import torch
from torch import distributed
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
def get_dataloader(
root_dir: str,
local_rank: int,
batch_size: int,
dali = False,
shuffle=True,
drop_last=True,
num_workers=2,
) -> Iterable:
if dali and root_dir != "synthetic":
rec = root_dir + '.rec'#os.path.join(root_dir, 'train.rec')
idx = root_dir + '.idx'#os.path.join(root_dir, 'train.idx')
return dali_data_iter(
batch_size=batch_size, rec_file=rec,
idx_file=idx, num_threads=2, local_rank=local_rank)
else:
if root_dir == "synthetic":
train_set = SyntheticDataset()
else:
train_set = MXFaceDataset(root_dir=root_dir, local_rank=local_rank)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=shuffle)
train_loader = DataLoaderX(
local_rank=local_rank,
dataset=train_set,
batch_size=batch_size,
sampler=train_sampler,
num_workers=num_workers,
pin_memory=True,
drop_last=drop_last,
)
return train_loader
class BackgroundGenerator(threading.Thread):
def __init__(self, generator, local_rank, max_prefetch=6):
super(BackgroundGenerator, self).__init__()
self.queue = Queue.Queue(max_prefetch)
self.generator = generator
self.local_rank = local_rank
self.daemon = True
self.start()
def run(self):
torch.cuda.set_device(self.local_rank)
for item in self.generator:
self.queue.put(item)
self.queue.put(None)
def next(self):
next_item = self.queue.get()
if next_item is None:
raise StopIteration
return next_item
def __next__(self):
return self.next()
def __iter__(self):
return self
class DataLoaderX(DataLoader):
def __init__(self, local_rank, **kwargs):
super(DataLoaderX, self).__init__(**kwargs)
self.stream = torch.cuda.Stream(local_rank)
self.local_rank = local_rank
def __iter__(self):
self.iter = super(DataLoaderX, self).__iter__()
self.iter = BackgroundGenerator(self.iter, self.local_rank)
self.preload()
return self
def preload(self):
self.batch = next(self.iter, None)
if self.batch is None:
return None
with torch.cuda.stream(self.stream):
for k in range(len(self.batch)):
self.batch[k] = self.batch[k].to(device=self.local_rank, non_blocking=True)
def __next__(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is None:
raise StopIteration
self.preload()
return batch
class MXFaceDataset(Dataset):
def __init__(self, root_dir, local_rank):
super(MXFaceDataset, self).__init__()
self.transform = transforms.Compose(
[transforms.ToPILImage(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.root_dir = root_dir
self.local_rank = local_rank
path_imgrec = root_dir + '.rec'#os.path.join(root_dir, 'train.rec')
path_imgidx = root_dir + '.idx'#os.path.join(root_dir, 'train.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
s = self.imgrec.read_idx(0)
header, _ = mx.recordio.unpack(s)
if header.flag > 0:
self.header0 = (int(header.label[0]), int(header.label[1]))
self.imgidx = np.array(range(1, int(header.label[0])))
else:
self.imgidx = np.array(list(self.imgrec.keys))
def __getitem__(self, index):
idx = self.imgidx[index]
s = self.imgrec.read_idx(idx)
header, img = mx.recordio.unpack(s)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
label = torch.tensor(label, dtype=torch.long)
sample = mx.image.imdecode(img).asnumpy()
if self.transform is not None:
sample = self.transform(sample)
return sample, label, index
def __len__(self):
return len(self.imgidx)
class SyntheticDataset(Dataset):
def __init__(self):
super(SyntheticDataset, self).__init__()
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32)
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img).squeeze(0).float()
img = ((img / 255) - 0.5) / 0.5
self.img = img
self.label = 1
def __getitem__(self, index):
return self.img, self.label
def __len__(self):
return 1000000
def dali_data_iter(
batch_size: int, rec_file: str, idx_file: str, num_threads: int,
initial_fill=32768, random_shuffle=True,
prefetch_queue_depth=1, local_rank=0, name="reader",
mean=(127.5, 127.5, 127.5),
std=(127.5, 127.5, 127.5)):
"""
Parameters:
----------
initial_fill: int
Size of the buffer that is used for shuffling. If random_shuffle is False, this parameter is ignored.
"""
rank: int = distributed.get_rank()
world_size: int = distributed.get_world_size()
import nvidia.dali.fn as fn
import nvidia.dali.types as types
from nvidia.dali.pipeline import Pipeline
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
pipe = Pipeline(
batch_size=batch_size, num_threads=num_threads,
device_id=local_rank, prefetch_queue_depth=prefetch_queue_depth, )
condition_flip = fn.random.coin_flip(probability=0.5)
with pipe:
jpegs, labels = fn.readers.mxnet(
path=rec_file, index_path=idx_file, initial_fill=initial_fill,
num_shards=world_size, shard_id=rank,
random_shuffle=random_shuffle, pad_last_batch=False, name=name)
images = fn.decoders.image(jpegs, device="mixed", output_type=types.RGB)
images = fn.crop_mirror_normalize(
images, dtype=types.FLOAT, mean=mean, std=std, mirror=condition_flip)
pipe.set_outputs(images, labels)
pipe.build()
return DALIWarper(DALIClassificationIterator(pipelines=[pipe], reader_name=name, ))
@torch.no_grad()
class DALIWarper(object):
def __init__(self, dali_iter):
self.iter = dali_iter
def __next__(self):
data_dict = self.iter.__next__()[0]
tensor_data = data_dict['data'].cuda()
tensor_label: torch.Tensor = data_dict['label'].cuda().long()
tensor_label.squeeze_()
return tensor_data, tensor_label
def __iter__(self):
return self
def reset(self):
self.iter.reset()