-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroup_diff_data_gen.py
1881 lines (1494 loc) · 77.6 KB
/
group_diff_data_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import glob
import json
import math
import random
import cv2
import numpy as np
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
from PIL import Image, ImageDraw
from scipy.ndimage import binary_dilation
from torch import Tensor
from torchvision.ops import masks_to_boxes
from openpose import OpenposeDetector
class GroupDiffDataGen(data.Dataset):
def __init__(self,
state,
skeleton_path_prefix,
add_harmonization=False,
reposing_exemplar=True,
use_localssd=False):
self.state = state
self.add_harmonization = add_harmonization
self.use_localssd = use_localssd
if state == 'train':
data_dir = './LV-MHP-v2/train'
self.data_path_list = glob.glob(f'{data_dir}/images/*.jpg')
self.parsing_dir = f'{data_dir}/parsing_annos'
self.pose_estimation_path = f'{data_dir}/pose_estimation'
self.data_path_list.sort()
else:
data_dir = './LV-MHP-v2/val'
self.data_path_list = glob.glob(f'{data_dir}/images/*.jpg')
self.parsing_dir = f'{data_dir}/parsing_annos'
self.data_path_list.sort()
self.skeleton_path_prefix = skeleton_path_prefix
self.resize_transform_img = transforms.Resize(size=512)
self.resize_transform_mask = transforms.Resize(
size=512, interpolation=transforms.InterpolationMode.NEAREST)
self.resize_transform_exemplar = transforms.Resize(size=224)
self.apply_openpose = OpenposeDetector()
self.reposing_exemplar = reposing_exemplar
self.random_color_identity_group = [[(0, 0, 255), (0, 0, 200),
(0, 0, 150)],
[(255, 0, 0), (200, 0, 0),
(150, 0, 0)],
[(0, 255, 0), (0, 200, 0),
(0, 200, 0)],
[(255, 0, 255), (200, 0, 200),
(150, 0, 150)],
[(0, 255, 255), (0, 200, 200),
(0, 150, 150)]]
def transform_exemplar(self):
transform_list = []
transform_list += [
transforms.RandomAffine(
degrees=20,
translate=(0.1, 0.1),
scale=(0.9, 1.10),
fill=255,
interpolation=transforms.InterpolationMode.BILINEAR)
]
if self.add_harmonization:
transform_list += [
transforms.ColorJitter(
brightness=(0.9, 1.1),
contrast=(0.9, 1.1),
saturation=(0.8, 1.3))
]
transform_list += [transforms.Resize(size=512)]
# transform_list += [transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
# (0.26862954, 0.26130258, 0.27577711))]
return transforms.Compose(transform_list)
def get_candidate_parsing_list_for_exemplar(self, inpaint_mask,
seleted_idx,
instance_parsing_list):
candidate_parsing_list = []
idx_in_candidate_list = 0
count = 0
for idx, instance_parsing in enumerate(instance_parsing_list):
mask_binary = np.zeros(
(inpaint_mask.shape[0], inpaint_mask.shape[1]), dtype=np.uint8)
mask_binary[instance_parsing > 0] = 1
if np.sum(mask_binary * inpaint_mask) == 0:
continue
candidate_parsing_list.append(instance_parsing)
if idx == seleted_idx:
idx_in_candidate_list = count
count += 1
return candidate_parsing_list, idx_in_candidate_list
def warp_parsing(self, parsing, rect1, rect2):
shape1 = parsing.shape
h = shape1[0]
w = shape1[1]
rect1 = np.array(rect1, dtype=np.float32)
rect2 = np.array(rect2, dtype=np.float32)
# ===== homography
H = cv2.getPerspectiveTransform(src=rect1, dst=rect2)
# print(H)
# H_inverse = np.linalg.inv(H)
# img_warped = cv2.warpPerspective(src=img, M=H_inverse, dsize=(w, h))
parsing_warped = cv2.warpPerspective(
src=parsing, M=H, dsize=(w, h), flags=cv2.INTER_NEAREST)
return parsing_warped
def rotate_whole_arms(self, ori_point, point_a, point_b, alpha):
x_0, y_0 = ori_point
x_a, y_a = point_a
x_b, y_b = point_b
x_a = x_a - x_0
y_a = y_a - y_0
x_b = x_b - x_0
y_b = y_b - y_0
x_a_prime = x_a * math.cos(alpha) - y_a * math.sin(alpha)
y_a_prime = x_a * math.sin(alpha) + y_a * math.cos(alpha)
x_b_dif = x_b - x_a
y_b_dif = y_b - y_a
x_b_prime = x_b_dif * math.cos(alpha) - y_b_dif * math.sin(
alpha) + x_a_prime + x_0
y_b_prime = x_b_dif * math.sin(alpha) + y_b_dif * math.cos(
alpha) + y_a_prime + y_0
return [x_a_prime + x_0, y_a_prime + y_0], [x_b_prime, y_b_prime]
def rotate_part_arms(self, ori_point, point_a, alpha):
x_0, y_0 = ori_point
x_a, y_a = point_a
x_a = x_a - x_0
y_a = y_a - y_0
x_a_prime = x_a * math.cos(alpha) - y_a * math.sin(alpha)
y_a_prime = x_a * math.sin(alpha) + y_a * math.cos(alpha)
return [x_a_prime + x_0, y_a_prime + y_0]
def randomly_change_pose(self, ori_coordinates, selected_person_idx):
new_coordinates = copy.deepcopy(ori_coordinates)
candidate = ori_coordinates['candidate']
subset = ori_coordinates['subset']
augmentation_type = random.uniform(0, 1)
try:
index_2 = int(subset[selected_person_idx][2])
index_3 = int(subset[selected_person_idx][3])
index_4 = int(subset[selected_person_idx][4])
index_5 = int(subset[selected_person_idx][5])
index_6 = int(subset[selected_person_idx][6])
index_7 = int(subset[selected_person_idx][7])
except:
return new_coordinates
if (index_2 == -1 or index_3 == -1
or index_4 == -1) and (index_3 == -1 or index_4 == -1) and (
index_5 == -1 or index_6 == -1
or index_7 == -1) and (index_6 == -1 or index_7 == -1):
return new_coordinates
augmentation_type = random.uniform(0, 1)
trial_num = 0
while (trial_num < 5):
if augmentation_type < 0.25:
if index_2 == -1 or index_3 == -1 or index_4 == -1:
trial_num += 1
augmentation_type = random.uniform(0, 1)
continue
# left arms
# change from the body_idx 2
changed_x3, changed_x4 = self.rotate_whole_arms(
candidate[int(subset[selected_person_idx][2])][0:2],
candidate[int(subset[selected_person_idx][3])][0:2],
candidate[int(subset[selected_person_idx][4])][0:2],
2 * math.pi * random.random())
new_coordinates['candidate'][int(
subset[selected_person_idx][3])][0:2] = changed_x3
new_coordinates['candidate'][int(
subset[selected_person_idx][4])][0:2] = changed_x4
elif augmentation_type < 0.5:
# left arms
# change from the body_idx 3
if index_3 == -1 or index_4 == -1:
trial_num += 1
augmentation_type = random.uniform(0, 1)
continue
changed_x4 = self.rotate_part_arms(
candidate[int(subset[selected_person_idx][3])][0:2],
candidate[int(subset[selected_person_idx][4])][0:2],
2 * math.pi * random.random())
new_coordinates['candidate'][int(
subset[selected_person_idx][4])][0:2] = changed_x4
elif augmentation_type < 0.75:
# right arms
# change from the body_idx 5
if index_5 == -1 or index_6 == -1 or index_7 == -1:
trial_num += 1
augmentation_type = random.uniform(0, 1)
continue
changed_x6, changed_x7 = self.rotate_whole_arms(
candidate[int(subset[selected_person_idx][5])][0:2],
candidate[int(subset[selected_person_idx][6])][0:2],
candidate[int(subset[selected_person_idx][7])][0:2],
2 * math.pi * random.random())
new_coordinates['candidate'][int(
subset[selected_person_idx][6])][0:2] = changed_x6
new_coordinates['candidate'][int(
subset[selected_person_idx][7])][0:2] = changed_x7
else:
# right arms
# change from the body_idx 5
if index_6 == -1 or index_7 == -1:
trial_num += 1
augmentation_type = random.uniform(0, 1)
continue
changed_x7 = self.rotate_part_arms(
candidate[int(subset[selected_person_idx][6])][0:2],
candidate[int(subset[selected_person_idx][7])][0:2],
2 * math.pi * random.random())
new_coordinates['candidate'][int(
subset[selected_person_idx][7])][0:2] = changed_x7
break
return new_coordinates
def reposing_exemplar_img(self, exemplar_img, parsing_map):
_, ori_coordinates = self.apply_openpose(exemplar_img)
if self.reposing_exemplar:
selected_person_idx = 0
new_coordinates = self.randomly_change_pose(
ori_coordinates, selected_person_idx)
connected_line_list = [[2, 3], [3, 4], [5, 6], [6, 7]]
new_exemplar_img = exemplar_img.copy()
for connected_line in connected_line_list:
try:
index = int(
ori_coordinates['subset'][0][connected_line[0]])
except:
continue
if index == -1:
continue
point1 = ori_coordinates['candidate'][index][0:2]
try:
index = int(
ori_coordinates['subset'][0][connected_line[1]])
except:
continue
if index == -1:
continue
point2 = ori_coordinates['candidate'][index][0:2]
try:
index = int(
new_coordinates['subset'][0][connected_line[0]])
except:
continue
if index == -1:
continue
new_point1 = new_coordinates['candidate'][index][0:2]
try:
index = int(
new_coordinates['subset'][0][connected_line[1]])
except:
continue
if index == -1:
continue
new_point2 = new_coordinates['candidate'][index][0:2]
if (point1 == new_point1) and (point2 == new_point2):
continue
# if the arm, extend the point2
if (connected_line == [3, 4]) or (connected_line == [6, 7]):
# import pdb
# pdb.set_trace()
point2[0] = point2[0] + 0.6 * (point2[0] - point1[0])
point2[1] = point2[1] + 0.6 * (point2[1] - point1[1])
length = ((point1[0] - point2[0])**2 +
(point1[1] - point2[1])**2)**0.5
ori_rec_points = self.find_parallel_points(
point1, point2, 0.25 * length)
# if the arm, extend the point2
if (connected_line == [3, 4]) or (connected_line == [6, 7]):
# import pdb
# pdb.set_trace()
new_point2[0] = new_point2[0] + 0.6 * (
new_point2[0] - new_point1[0])
new_point2[1] = new_point2[1] + 0.6 * (
new_point2[1] - new_point1[1])
length = ((new_point1[0] - new_point2[0])**2 +
(new_point1[1] - new_point2[1])**2)**0.5
new_rec_points = self.find_parallel_points(
new_point1, new_point2, 0.25 * length)
warped_exemplar = self.warp_img(exemplar_img, ori_rec_points,
new_rec_points)
masked_area = np.zeros_like(exemplar_img[:, :, 0])
cv2.fillPoly(masked_area, [np.array(ori_rec_points)], 255)
masked_area = masked_area * (parsing_map > 0)
new_exemplar_img[masked_area == 255] = 255
warped_parsing = self.warp_parsing(parsing_map, ori_rec_points,
new_rec_points)
masked_area = np.zeros_like(exemplar_img[:, :, 0])
cv2.fillPoly(masked_area, [np.array(new_rec_points)], 255)
masked_area = masked_area * (warped_parsing > 0)
new_exemplar_img[masked_area == 255] = warped_exemplar[
masked_area == 255]
return new_exemplar_img, new_coordinates
else:
return exemplar_img, ori_coordinates
def warp_img(self, img, rect1, rect2):
shape1 = img.shape
h = shape1[0]
w = shape1[1]
rect1 = np.array(rect1, dtype=np.float32)
rect2 = np.array(rect2, dtype=np.float32)
# ===== homography
H = cv2.getPerspectiveTransform(src=rect1, dst=rect2)
# print(H)
# H_inverse = np.linalg.inv(H)
# img_warped = cv2.warpPerspective(src=img, M=H_inverse, dsize=(w, h))
img_warped = cv2.warpPerspective(src=img, M=H, dsize=(w, h))
return img_warped
def find_parallel_points(self, point1, point2, distance):
# Calculate slope and intercept of the line passing through the two points
# slope = (point2[1] - point1[1]) / (point2[0] - point1[0])
# intercept = point1[1] - slope * point1[0]
# Calculate the angle of the line
angle = np.arctan2(point2[1] - point1[1], point2[0] - point1[0])
# Calculate new points parallel to the line
parallel_points = []
for direction in [-1,
1]: # Two directions (left and right of the line)
new_x = point1[0] + direction * distance * np.sin(angle)
new_y = point1[1] - direction * distance * np.cos(angle)
parallel_points.append((int(new_x), int(new_y)))
for direction in [1,
-1]: # Two directions (left and right of the line)
new_x = point2[0] + direction * distance * np.sin(angle)
new_y = point2[1] - direction * distance * np.cos(angle)
parallel_points.append((int(new_x), int(new_y)))
return parallel_points
def read_img(self, img_path):
img = np.array(Image.open(img_path).convert('RGB'))
return img
def read_img_exemplar_mask(self, img, candidate_parsing_list):
img_exemplar_list = []
parsing_exemplar_list = []
for parsing in candidate_parsing_list:
mask_binary = np.zeros((img.shape[0], img.shape[1]),
dtype=np.uint8)
mask_binary[parsing > 0] = 1
img_exemplar = img.copy()
img_exemplar[mask_binary == 0] = 255.
inner_dilated_aug = random.uniform(0, 1)
if inner_dilated_aug < 0.2:
structuring_element = np.ones((5, 5), dtype=bool)
dilated_mask_binary = binary_dilation(
1 - mask_binary, structure=structuring_element)
img_exemplar[dilated_mask_binary == 1] = 255.
mask_tensor = torch.from_numpy(mask_binary).unsqueeze(0)
obj_ids = torch.unique(mask_tensor)
obj_ids = obj_ids[1:]
masks = mask_tensor == obj_ids[:, None, None]
boxes = masks_to_boxes(masks)
h, w = mask_binary.shape
# make the bounding box slightly larger
enlarge_ratio = 0.1
enlarge_margin_h = int((boxes[0][3] - boxes[0][1]) * enlarge_ratio)
enlarge_margin_w = int((boxes[0][2] - boxes[0][0]) * enlarge_ratio)
bbox_y1, bbox_y2 = max(0,
int(boxes[0][1]) - enlarge_margin_h), min(
h,
int(boxes[0][3]) + enlarge_margin_h)
bbox_x1, bbox_x2 = max(0,
int(boxes[0][0]) - enlarge_margin_w), min(
w,
int(boxes[0][2]) + enlarge_margin_w)
img_exemplar = img_exemplar[bbox_y1:bbox_y2, bbox_x1:bbox_x2]
img_exemplar_list.append(img_exemplar)
parsing_exemplar_list.append(parsing[bbox_y1:bbox_y2,
bbox_x1:bbox_x2])
return img_exemplar_list, parsing_exemplar_list
def transform_exemplar_and_parsing(self, exemplar_img, parsing):
random_affine_transformation = transforms.RandomAffine(
degrees=20,
translate=(0.1, 0.1),
scale=(0.9, 1.10),
fill=255,
interpolation=transforms.InterpolationMode.BILINEAR)
resize_transform_img = transforms.Resize(size=512)
resize_transform_parsing = transforms.Resize(
size=512, interpolation=transforms.InterpolationMode.NEAREST)
channels, height, width = exemplar_img.size()
ret = random_affine_transformation.get_params(
random_affine_transformation.degrees,
random_affine_transformation.translate,
random_affine_transformation.scale,
random_affine_transformation.shear, [width, height])
fill = 255
if isinstance(exemplar_img, Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * channels
else:
fill = [float(f) for f in fill]
exemplar_img = F.affine(
exemplar_img,
*ret,
interpolation=transforms.InterpolationMode.BILINEAR,
fill=fill,
center=random_affine_transformation.center)
channels, _, _ = parsing.size()
fill = 0
if isinstance(parsing, Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * channels
else:
fill = [float(f) for f in fill]
parsing = F.affine(
parsing,
*ret,
interpolation=transforms.InterpolationMode.NEAREST,
fill=fill,
center=random_affine_transformation.center)
exemplar_img = resize_transform_img(exemplar_img)
parsing = resize_transform_parsing(parsing)
return exemplar_img, parsing
def random_brush_top_down(self, skeleton_mask, ori_rec_points):
mask = Image.new('L', (skeleton_mask.shape[1], skeleton_mask.shape[0]), 0)
num_points = int(np.random.uniform(8, 15))
sampled_points_top = np.linspace(ori_rec_points[0], ori_rec_points[1], num_points)
sampled_points_top = [(int(x), int(y)) for x, y in sampled_points_top]
sampled_points_down = np.linspace(ori_rec_points[3], ori_rec_points[2], num_points)
sampled_points_down = [(int(x), int(y)) for x, y in sampled_points_down]
vertex = []
for top_point, down_point in zip(sampled_points_top, sampled_points_down):
random_move = np.random.uniform(-0.6, 0.6)
sampled_x, sampled_y = top_point
sampled_x = sampled_x + int(random_move * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y - int(np.random.uniform(0, 1.0) * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
sampled_x, sampled_y = down_point
random_move = np.random.uniform(-0.6, 0.6)
sampled_x = sampled_x + int(random_move * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y + int(np.random.uniform(0, 1.0) * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
draw = ImageDraw.Draw(mask)
min_width = 12
max_width = 48
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=1, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=1)
mask = np.asarray(mask, np.uint8) * 255
return mask
def load_arm_hand_masks(self, skeleton_mask, selected_person_bbox,
instance_parsing_list):
area_list = []
for instance_parsing in instance_parsing_list:
mask_binary = np.zeros((instance_parsing.shape[0], instance_parsing.shape[1]), dtype=np.uint8)
mask_binary[instance_parsing > 0] = 1
area = np.sum(selected_person_bbox * mask_binary)
area_list.append(area)
seleted_idx = np.argmax(area_list)
selected_parsing = instance_parsing_list[seleted_idx]
temp_mask = np.zeros_like(selected_parsing)
for value in [5, 7]:
temp_mask[selected_parsing == value] = 1
if np.sum(temp_mask) != 0:
kernel_width = 28
kernel_height = 45
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_width, kernel_height))
dilated_mask = cv2.dilate(temp_mask, kernel)
skeleton_mask[skeleton_mask == 0] = dilated_mask[skeleton_mask == 0]
temp_mask = np.zeros_like(selected_parsing)
for value in [6, 8]:
temp_mask[selected_parsing == value] = 1
if np.sum(temp_mask) != 0:
kernel_width = 28
kernel_height = 45
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_width, kernel_height))
dilated_mask = cv2.dilate(temp_mask, kernel)
skeleton_mask[skeleton_mask == 0] = dilated_mask[skeleton_mask == 0]
return skeleton_mask, seleted_idx
def random_brush_down_top(self, skeleton_mask, ori_rec_points):
mask = Image.new('L', (skeleton_mask.shape[1], skeleton_mask.shape[0]), 0)
num_points = int(np.random.uniform(8, 15))
sampled_points_top = np.linspace(ori_rec_points[0], ori_rec_points[1], num_points)
sampled_points_top = [(int(x), int(y)) for x, y in sampled_points_top]
sampled_points_down = np.linspace(ori_rec_points[3], ori_rec_points[2], num_points)
sampled_points_down = [(int(x), int(y)) for x, y in sampled_points_down]
vertex = []
for top_point, down_point in zip(sampled_points_down, sampled_points_top):
random_move = np.random.uniform(-0.6, 0.6)
sampled_x, sampled_y = top_point
sampled_x = sampled_x + int(random_move * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y - int(np.random.uniform(0, 1.0) * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
sampled_x, sampled_y = down_point
random_move = np.random.uniform(-0.6, 0.6)
sampled_x = sampled_x + int(random_move * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y + int(np.random.uniform(0, 1.0) * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
draw = ImageDraw.Draw(mask)
min_width = 12
max_width = 48
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=1, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=1)
mask = np.asarray(mask, np.uint8) * 255
# import pdb
# pdb.set_trace()
return mask
def random_brush_left_right(self, skeleton_mask, ori_rec_points):
mask = Image.new('L', (skeleton_mask.shape[1], skeleton_mask.shape[0]), 0)
num_points = int(np.random.uniform(8, 15))
sampled_points_top = np.linspace(ori_rec_points[3], ori_rec_points[0], num_points)
sampled_points_top = [(int(x), int(y)) for x, y in sampled_points_top]
sampled_points_down = np.linspace(ori_rec_points[2], ori_rec_points[1], num_points)
sampled_points_down = [(int(x), int(y)) for x, y in sampled_points_down]
vertex = []
for top_point, down_point in zip(sampled_points_down, sampled_points_top):
random_move = np.random.uniform(-0.6, 0.6)
sampled_x, sampled_y = top_point
sampled_x = sampled_x - int(np.random.uniform(0, 1.0) * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y + int(random_move * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
sampled_x, sampled_y = down_point
random_move = np.random.uniform(-0.6, 0.6)
sampled_x = sampled_x + int(np.random.uniform(0, 1.0) * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y + int(random_move * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
draw = ImageDraw.Draw(mask)
min_width = 12
max_width = 48
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=1, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=1)
mask = np.asarray(mask, np.uint8) * 255
# import pdb
# pdb.set_trace()
return mask
def random_brush_right_left(self, skeleton_mask, ori_rec_points):
mask = Image.new('L', (skeleton_mask.shape[1], skeleton_mask.shape[0]), 0)
num_points = int(np.random.uniform(8, 15))
sampled_points_top = np.linspace(ori_rec_points[3], ori_rec_points[0], num_points)
sampled_points_top = [(int(x), int(y)) for x, y in sampled_points_top]
sampled_points_down = np.linspace(ori_rec_points[2], ori_rec_points[1], num_points)
sampled_points_down = [(int(x), int(y)) for x, y in sampled_points_down]
vertex = []
for top_point, down_point in zip(sampled_points_top, sampled_points_down):
random_move = np.random.uniform(-0.6, 0.6)
sampled_x, sampled_y = top_point
sampled_x = sampled_x + int(np.random.uniform(0, 1.0) * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y + int(random_move * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
sampled_x, sampled_y = down_point
random_move = np.random.uniform(-0.6, 0.6)
sampled_x = sampled_x - int(np.random.uniform(0, 1.0) * (sampled_points_top[1][0] - sampled_points_top[0][0]))
sampled_y = sampled_y + int(random_move * (sampled_points_down[1][1] - sampled_points_down[0][1]))
vertex.append((sampled_x, sampled_y))
draw = ImageDraw.Draw(mask)
min_width = 12
max_width = 48
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=1, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=1)
mask = np.asarray(mask, np.uint8) * 255
return mask
def random_brush_augment(self, skeleton_mask, ori_rec_points):
brush_direction_type = random.uniform(0, 1)
if brush_direction_type < 0.25:
brush_mask = self.random_brush_top_down(skeleton_mask, ori_rec_points)
elif brush_direction_type < 0.5:
brush_mask = self.random_brush_down_top(skeleton_mask, ori_rec_points)
elif brush_direction_type < 0.75:
brush_mask = self.random_brush_left_right(skeleton_mask, ori_rec_points)
else:
brush_mask = self.random_brush_right_left(skeleton_mask, ori_rec_points)
skeleton_mask[skeleton_mask == 0] = brush_mask[skeleton_mask == 0]
return skeleton_mask
def compute_diff_mask(self, ori_coordinates, new_coordinates,
skeleton_mask):
skeleton_mask = skeleton_mask * 255
diff_skeleton_list = []
for subset_idx, subset in enumerate(ori_coordinates['subset']):
for skeleton_idx in range(18):
if ori_coordinates['candidate'][
ori_coordinates['subset'][subset_idx]
[skeleton_idx]] != new_coordinates['candidate'][
new_coordinates['subset'][subset_idx][skeleton_idx]]:
diff_skeleton_list.append(f'{subset_idx}_{skeleton_idx}')
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
for diff_skeleton in diff_skeleton_list:
subset_idx, skeleton_idx = diff_skeleton.split('_')
subset_idx = int(subset_idx)
for limb in limbSeq:
if int(skeleton_idx) + 1 in limb:
index_point_1 = int(
ori_coordinates['subset'][subset_idx][limb[0] - 1])
index_point_2 = int(
ori_coordinates['subset'][subset_idx][limb[1] - 1])
if index_point_1 != -1 and index_point_2 != -1:
point1 = ori_coordinates['candidate'][index_point_1][
0:2]
point2 = ori_coordinates['candidate'][index_point_2][
0:2]
point2[0] = point2[0] + 0.7 * (point2[0] - point1[0])
point2[1] = point2[1] + 0.7 * (point2[1] - point1[1])
length = ((point1[0] - point2[0])**2 +
(point1[1] - point2[1])**2)**0.5
length_ratio = random.uniform(0.20, 0.40)
ori_rec_points = self.find_parallel_points(
point1, point2, length_ratio * length)
cv2.fillPoly(skeleton_mask, [np.array(ori_rec_points)],
255)
skeleton_mask = self.random_brush_augment(skeleton_mask, ori_rec_points)
index_point_1 = int(
new_coordinates['subset'][subset_idx][limb[0] - 1])
index_point_2 = int(
new_coordinates['subset'][subset_idx][limb[1] - 1])
if index_point_1 != -1 and index_point_2 != -1:
point1 = new_coordinates['candidate'][index_point_1][
0:2]
point2 = new_coordinates['candidate'][index_point_2][
0:2]
point2[0] = point2[0] + 0.7 * (point2[0] - point1[0])
point2[1] = point2[1] + 0.7 * (point2[1] - point1[1])
length = ((point1[0] - point2[0])**2 +
(point1[1] - point2[1])**2)**0.5
length_ratio = random.uniform(0.20, 0.40)
ori_rec_points = self.find_parallel_points(
point1, point2, length_ratio * length)
cv2.fillPoly(skeleton_mask, [np.array(ori_rec_points)],
255)
skeleton_mask = self.random_brush_augment(skeleton_mask, ori_rec_points)
skeleton_mask = skeleton_mask / 255
return skeleton_mask
def get_id_feature(self, candidate_parsing_list):
id_feature_list = []
for instance_parsing in candidate_parsing_list:
bbox_mask = np.zeros(
(instance_parsing.shape[0], instance_parsing.shape[1]),
dtype=np.uint8)
mask_binary = np.zeros(
(instance_parsing.shape[0], instance_parsing.shape[1]),
dtype=np.uint8)
mask_binary[instance_parsing > 0] = 1
mask_tensor = torch.from_numpy(mask_binary).unsqueeze(0)
obj_ids = torch.unique(mask_tensor)
obj_ids = obj_ids[1:]
masks = mask_tensor == obj_ids[:, None, None]
boxes = masks_to_boxes(masks)
h, w = mask_binary.shape
enlarge_ratio = 0.1
enlarge_margin_h = int((boxes[0][3] - boxes[0][1]) * enlarge_ratio)
enlarge_margin_w = int((boxes[0][2] - boxes[0][0]) * enlarge_ratio)
bbox_y1, bbox_y2 = max(0,
int(boxes[0][1]) - enlarge_margin_h), min(
h,
int(boxes[0][3]) + enlarge_margin_h)
bbox_x1, bbox_x2 = max(0,
int(boxes[0][0]) - enlarge_margin_w), min(
w,
int(boxes[0][2]) + enlarge_margin_w)
bbox_mask[bbox_y1:bbox_y2, bbox_x1:bbox_x2] = 1
id_feature_list.append(bbox_mask)
return id_feature_list
def generate_skeletion_mask(self, coordinates, skeleton_map):
skeleton_mask = np.zeros(
(skeleton_map.shape[0], skeleton_map.shape[1]), dtype=np.uint8)
candidate = coordinates['candidate']
subset = coordinates['subset']
selected_person_idx = random.choice(range(len(subset)))
skeleton_joint_list = []
random_type = random.uniform(0, 1)
if random_type < 0.35:
skeleton_joint_list.append([2, 3])
skeleton_joint_list.append([3, 4])
elif random_type < 0.7:
skeleton_joint_list.append([5, 6])
skeleton_joint_list.append([6, 7])
else:
skeleton_joint_list.append([2, 3])
skeleton_joint_list.append([3, 4])
skeleton_joint_list.append([5, 6])
skeleton_joint_list.append([6, 7])
# left and right arms
for skeleton_joint in skeleton_joint_list:
index_point_1 = int(subset[selected_person_idx][skeleton_joint[0]])
index_point_2 = int(subset[selected_person_idx][skeleton_joint[1]])
if index_point_1 != -1 and index_point_2 != -1:
point1 = candidate[index_point_1][0:2]
point2 = candidate[index_point_2][0:2]
point2[0] = point2[0] + 0.7 * (point2[0] - point1[0])
point2[1] = point2[1] + 0.7 * (point2[1] - point1[1])
length = ((point1[0] - point2[0])**2 +
(point1[1] - point2[1])**2)**0.5
length_ratio = random.uniform(0.20, 0.40)
ori_rec_points = self.find_parallel_points(
point1, point2, length_ratio * length)
cv2.fillPoly(skeleton_mask, [np.array(ori_rec_points)], 255)
# import pdb
# pdb.set_trace()
# Image.fromarray(skeleton_mask).save('temp_skeleton_mask.png')
skeleton_mask = self.random_brush_augment(skeleton_mask, ori_rec_points)
# import pdb
# pdb.set_trace()
# Image.fromarray(skeleton_mask).save('temp_skeleton_mask.png')
skeleton_mask = skeleton_mask / 255
# selected person bbox
selected_person_bbox = np.zeros(
(skeleton_map.shape[0], skeleton_map.shape[1]), dtype=np.uint8)
x_list = []
y_list = []
for i in range(18):
index = int(subset[selected_person_idx][i])
if index == -1:
continue
x, y = candidate[index][0:2]
x_list.append(x)
y_list.append(y)
x_min = min(x_list)
x_max = max(x_list)
y_min = min(y_list)
y_max = max(y_list)
x1 = int(max(0, x_min - 0.4 * (x_max - x_min)))
x2 = int(x_max + 0.4 * (x_max - x_min))
y1 = int(max(0, y_min - 0.4 * (y_max - y_min)))
y2 = int(y_max + 0.4 * (y_max - y_min))
selected_person_bbox[y1:y2, x1:x2] = 1
return skeleton_mask, selected_person_idx, selected_person_bbox
def mmpose_to_openpose(self, mmpose_coordinates, bbox_threshold=0.2):
num_persons = len(mmpose_coordinates)
coordinates = {}
coordinates['subset'] = []
coordinates['candidate'] = []
coordinate_count = 0
for person_idx in range(num_persons):
if mmpose_coordinates[person_idx]["bbox_score"] < bbox_threshold:
continue
subset = {}
for subset_idx in range(18):
subset[subset_idx] = -1
for subset_idx, skeleton_idx in enumerate(
[0, 17, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4,
3]):
if skeleton_idx == 17:
if mmpose_coordinates[person_idx]["keypoint_scores"][
6] < 0.1:
continue
if mmpose_coordinates[person_idx]["keypoint_scores"][
5] < 0.1:
continue
subset[subset_idx] = coordinate_count
coordinates_6 = mmpose_coordinates[person_idx][
"keypoints"][6]
coordinates_5 = mmpose_coordinates[person_idx][
"keypoints"][5]
coordinates['candidate'].append([
(coordinates_6[0] + coordinates_5[0]) / 2.0,
(coordinates_6[1] + coordinates_5[1]) / 2.0
])
coordinate_count += 1
else:
if mmpose_coordinates[person_idx]["keypoint_scores"][
skeleton_idx] < 0.5:
continue
subset[subset_idx] = coordinate_count
coordinates['candidate'].append(
mmpose_coordinates[person_idx]["keypoints"]
[skeleton_idx])
coordinate_count += 1
coordinates['subset'].append(subset)
return coordinates
def generate_bbox_from_mask(self, mask):
# Find the coordinates of non-zero elements in the mask
y_coords, x_coords = np.where(mask)
if len(y_coords) == 0 or len(x_coords) == 0:
# No non-zero elements found (empty mask)
return None
# Compute the bounding box corners
y_min, y_max = np.min(y_coords), np.max(y_coords)
x_min, x_max = np.min(x_coords), np.max(x_coords)
# Return the bounding box coordinates as (y_min, x_min, y_max, x_max)
return y_min, x_min, y_max, x_max
def generate_skeletion_mask(self, coordinates, skeleton_map):
skeleton_mask = np.zeros(
(skeleton_map.shape[0], skeleton_map.shape[1]), dtype=np.uint8)