The script train.py is all you need :)
Important Command Line Arguments for train.py
Path to the source directory containing the dataset.
Path where the trained model should be stored.
The total number of iterations for training (30_000
by default).
The iteration index until which MLP optimization is paused (3000
by default).
The iteration index until which the Gaussian features start to optimized. (10000
by default) Need to use together with the iterative_opt_interval
.
The default mode is optimizaing only the colors and geometry of the scene. After iterative_opt_interval
iteration, the mode changes to optimizing only the Gaussian features.
Configure to monitor the RAM and CUDA used.
Apply regularization to the deformation of the Gaussians. (0.0
by default)
Number of sampled pixels per image for contrastive semantically-aware learning. (5000
by default)
Number of sampled masks per image for contrastive semantically-aware learning. (50
by default)
Number of neighbors for computing smooth Gaussian features (16
by default)
Configure to load images / masks to VRAM on the fly. (For training on small GPU)
Configure to load images from storage to RAM on the fly (For training on limited RAM)
Configure to load masks from storage to RAM on the fly (For training on limited RAM)
Add this flag to do training/test split for evaluation.
Add this flag to use white background instead of black (default)
Space-separated iterations at which the training script computes L1 and PSNR over test set.
Space-separated iterations at which the training script saves the Gaussian model.
Iteration where densification stops, 15_000
by default.
python train.py -s data/NeRF-DS/<NAME> -m output/NeRF-DS/<NAME> --warm_up 3000 --warm_up_3d_features 15000 --iterative_opt_interval 20000 --iterations 30000 --test_iterations 5000 10000 20000 30000 --save_iterations 20000 30000 --monitor_mem --densify_until_iter 15000 --lambda_reg_deform 0.0 --eval --num_sampled_pixels 5000 --num_sampled_masks 25 --smooth_K 16 ## You can configure --load2gpu_on_the_fly --load_image_on_the_fly --load_mask_on_the_fly for running on smaller GPU or local machine having less RAM.
python train.py -s data/HyperNeRF/<interp/misc>/<NAME> -m output/HyperNeRF/<NAME> --warm_up 1500 --warm_up_3d_features 15000 --iterative_opt_interval 20000 --iterations 30000 --test_iterations 5000 10000 15000 20000 30000 --save_iterations 20000 30000 --monitor_mem --densify_until_iter 9000 --lambda_reg_deform 0.0 --eval --num_sampled_pixels 5000 --num_sampled_masks 25 --smooth_K 16 ## You can configure --load2gpu_on_the_fly --load_image_on_the_fly --load_mask_on_the_fly for running on smaller GPU or local machine having less RAM.
python train.py -s data/Neu3D/<NAME> -m output/Neu3D/<NAME> --warm_up 3000 --warm_up_3d_features 15000 --iterative_opt_interval 20000 --iterations 30000 --test_iterations 10000 15000 20000 30000 --save_iterations 10000 15000 20000 30000 --monitor_mem --densify_until_iter 8000 --lambda_reg_deform 0 --eval --load2gpu_on_the_fly --num_sampled_pixels 10000 --num_sampled_masks 50 --smooth_K 16 --load_mask_on_the_fly --load_image_on_the_fly ## For multiview dataset, it's suggested to load images and anything-masks on-the-fly to reduce RAM usage
python train.py -s data/immersive/<NAME> -m output/immersive/<NAME> --warm_up 1000 --warm_up_3d_features 15000 --iterative_opt_interval 20000 --iterations 30000 --test_iterations 5000 10000 15000 20000 30000 --save_iterations 10000 15000 20000 30000 --monitor_mem --densify_until_iter 3000 --lambda_reg_deform 0 --eval --load2gpu_on_the_fly --num_sampled_pixels 10000 --num_sampled_masks 50 --load_mask_on_the_fly --load_image_on_the_fly ## For multiview dataset, it's supported to load images and anything-masks on-the-fly to reduce RAM usage
python train.py -s data/technicolor/Undistorted/<NAME> -m output/technicolor/<NAME> --warm_up 3000 --warm_up_3d_features 15000 --iterative_opt_interval 20000 --iterations 30000 --test_iterations 5000 10000 15000 20000 30000 --save_iterations 10000 15000 20000 30000 --monitor_mem --densify_until_iter 5000 --lambda_reg_deform 0 --eval --load2gpu_on_the_fly --num_sampled_pixels 10000 --num_sampled_masks 50 --load_mask_on_the_fly --load_image_on_the_fly ## For multiview dataset, it's supported to load images and anything-masks on-the-fly to reduce RAM usage