-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3dcnn_ROC.py
239 lines (196 loc) · 8.22 KB
/
3dcnn_ROC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# python 3dcnn_ROC.py --batch 32 --epoch 50 --videos dataset/ --nclass 2 --output 3dcnnresult/ --color True --skip False --depth 15
import argparse
import os
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
import numpy as np
from keras.datasets import cifar10
from keras.layers import (Activation, Conv3D, Dense, Dropout, Flatten,
MaxPooling3D)
from keras.layers.advanced_activations import LeakyReLU
from keras.losses import categorical_crossentropy
from keras.models import Sequential
from keras.optimizers import Adam
from keras.utils import np_utils
from keras.utils.vis_utils import plot_model
from sklearn.model_selection import train_test_split
import videoto3d
from tqdm import tqdm
def plot_history(history, result_dir):
plt.plot(history.history['acc'], marker='.')
plt.plot(history.history['val_acc'], marker='.')
plt.title('model accuracy')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.grid()
plt.legend(['acc', 'val_acc'], loc='lower right')
plt.savefig(os.path.join(result_dir, 'model_accuracy.png'))
plt.close()
plt.plot(history.history['loss'], marker='.')
plt.plot(history.history['val_loss'], marker='.')
plt.title('model loss')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid()
plt.legend(['loss', 'val_loss'], loc='upper right')
plt.savefig(os.path.join(result_dir, 'model_loss.png'))
plt.close()
def save_history(history, result_dir):
loss = history.history['loss']
acc = history.history['acc']
val_loss = history.history['val_loss']
val_acc = history.history['val_acc']
nb_epoch = len(acc)
with open(os.path.join(result_dir, 'result.txt'), 'w') as fp:
fp.write('epoch\tloss\tacc\tval_loss\tval_acc\n')
for i in range(nb_epoch):
fp.write('{}\t{}\t{}\t{}\t{}\n'.format(
i, loss[i], acc[i], val_loss[i], val_acc[i]))
def loaddata(video_dir, vid3d, nclass, result_dir, color=False, skip=True):
files = os.listdir(video_dir)
X = []
labels = []
labellist = []
pbar = tqdm(total=len(files))
for filename in files:
pbar.update(1)
if filename == '.DS_Store':
continue
name = os.path.join(video_dir, filename)
label = vid3d.get_UCF_classname(filename)
if label not in labellist:
if len(labellist) >= nclass:
continue
labellist.append(label)
labels.append(label)
X.append(vid3d.video3d(name, color=color, skip=skip))
pbar.close()
with open(os.path.join(result_dir, 'classes.txt'), 'w') as fp:
for i in range(len(labellist)):
fp.write('{}\n'.format(labellist[i]))
for num, label in enumerate(labellist):
for i in range(len(labels)):
if label == labels[i]:
labels[i] = num
if color:
return np.array(X).transpose((0, 2, 3, 4, 1)), labels
else:
return np.array(X).transpose((0, 2, 3, 1)), labels
def column(matrix, i):
return [row[i] for row in matrix]
#ROC curve functions
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
from keras.callbacks import Callback
class roc_callback(Callback):
def __init__(self,training_data,validation_data):
self.x = training_data[0]
self.y = training_data[1]
self.x_val = validation_data[0]
self.y_val = validation_data[1]
def on_train_begin(self, logs={}):
return
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict(self.x)
roc = roc_auc_score(self.y, y_pred)
y_pred_val = self.model.predict(self.x_val)
roc_val = roc_auc_score(self.y_val, y_pred_val)
fpr_val, tpr_val, threshold = roc_curve(column(self.y_val,0), column(y_pred_val,0))
auc_keras_val = auc(fpr_val, tpr_val)
print('\rroc-auc: %s - roc-auc_val: %s' % (str(round(roc,4)),str(round(roc_val,4))),end=100*' '+'\n')
fig=plt.figure()
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_val, tpr_val, label='Keras (area = {:.3f})'.format(auc_keras_val))
#plt.plot(fpr_rf, tpr_rf, label='RF (area = {:.3f})'.format(auc_rf))
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
fig.savefig('ROC_curve.png')
import pickle
with open("objects_region8.pkl","wb") as f:
pickle.dump([fpr_val,tpr_val,auc_keras_val],f)
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
def main():
parser = argparse.ArgumentParser(
description='simple 3D convolution for action recognition')
parser.add_argument('--batch', type=int, default=128)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--videos', type=str, default='UCF101',
help='directory where videos are stored')
parser.add_argument('--nclass', type=int, default=101)
parser.add_argument('--output', type=str, required=True)
parser.add_argument('--color', type=bool, default=False)
parser.add_argument('--skip', type=bool, default=True)
parser.add_argument('--depth', type=int, default=10)
args = parser.parse_args()
img_rows, img_cols, frames = 32, 32, args.depth
channel = 3 if args.color else 1
fname_npz = 'dataset_{}_{}_{}.npz'.format(
args.nclass, args.depth, args.skip)
vid3d = videoto3d.Videoto3D(img_rows, img_cols, frames)
nb_classes = args.nclass
if os.path.exists(fname_npz):
loadeddata = np.load(fname_npz)
X, Y = loadeddata["X"], loadeddata["Y"]
else:
x, y = loaddata(args.videos, vid3d, args.nclass,
args.output, args.color, args.skip)
X = x.reshape((x.shape[0], img_rows, img_cols, frames, channel))
Y = np_utils.to_categorical(y, nb_classes)
X = X.astype('float32')
np.savez(fname_npz, X=X, Y=Y)
print('Saved dataset to dataset.npz.')
print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape))
# Define model
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 3), input_shape=(
X.shape[1:]), border_mode='same'))
model.add(Activation('relu'))
model.add(Conv3D(32, kernel_size=(3, 3, 3), border_mode='same'))
model.add(Activation('softmax'))
model.add(MaxPooling3D(pool_size=(3, 3, 3), border_mode='same'))
model.add(Dropout(0.25))
model.add(Conv3D(64, kernel_size=(3, 3, 3), border_mode='same'))
model.add(Activation('relu'))
model.add(Conv3D(64, kernel_size=(3, 3, 3), border_mode='same'))
model.add(Activation('softmax'))
model.add(MaxPooling3D(pool_size=(3, 3, 3), border_mode='same'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation='softmax'))
model.compile(loss=categorical_crossentropy,
optimizer=Adam(), metrics=['accuracy'])
model.summary()
plot_model(model, show_shapes=True,
to_file=os.path.join(args.output, 'model.png'))
X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=0.2, random_state=43)
history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test), callbacks=[roc_callback(training_data=(X_train, Y_train),validation_data=(X_test,Y_test))],batch_size=args.batch,
epochs=args.epoch, verbose=1, shuffle=True)
model.evaluate(X_test, Y_test, verbose=0)
model_json = model.to_json()
if not os.path.isdir(args.output):
os.makedirs(args.output)
with open(os.path.join(args.output, 'ucf101_3dcnnmodel.json'), 'w') as json_file:
json_file.write(model_json)
model.save_weights(os.path.join(args.output, 'ucf101_3dcnnmodel.hd5'))
loss, acc = model.evaluate(X_test, Y_test, verbose=0)
print('Test loss:', loss)
print('Test accuracy:', acc)
plot_history(history, args.output)
save_history(history, args.output)
if __name__ == '__main__':
main()