-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
118 lines (87 loc) · 2.94 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <neuralclass.h>
int main()
{
NeuralClass NN;
int epochNum = 1;
int inputSize = NN.inputs.size();
int targetSize = NN.targets.size();
if(inputSize != targetSize)
{
std::cout<<"Ooops!!! Input size does not match with the target size..."<<std::endl;
return -1;
}
while (1) {
int goodEstimationNumber = 0;
for(int i=0; i<inputSize; i++)
{
double y = NN.getY(NN.inputs[i][0],NN.inputs[i][1]);
double error = NN.getError(NN.targets[i],NN.thresholdOut(NN.sigmoidFunc(y)));
if(error == 0)
goodEstimationNumber++;
NN.updateWeights(NN.inputs[i][0], NN.inputs[i][1],error);
}
if(goodEstimationNumber == inputSize)
{
std::cout<<"Training ended!!! All estimations are correct" <<std::endl;
std::cout<<"Epoch Number is: "<< epochNum <<std::endl;
std::cout<<"w1: "<< NN.w_1 <<" w2: "<<NN.w_2<<" w3: "<<NN.w_3<<std::endl;
break;
}
if(epochNum>100000)
{
std::cout<<"Looks like not linearly seperable..."<<std::endl;
return -1;
}
epochNum++;
}
cv::Mat graph = cv::Mat::zeros(cv::Size(500,500), CV_8UC3);
cv::line(graph,cv::Point(250,0), cv::Point(250,500),cv::Scalar(255,255,255),5);
cv::line(graph,cv::Point(0,250), cv::Point(500,250),cv::Scalar(255,255,255),5);
cv::namedWindow("Plot",0);
for(int i=0; i<targetSize; i++)
{
if(NN.targets[i] == 1)
{
cv::circle(graph,cv::Point(NN.inputs[i][0] + 250,250 - NN.inputs[i][1]),5, cv::Scalar(0,255,255), 5);
}
else {
cv::circle(graph,cv::Point(NN.inputs[i][0] + 250,250 - NN.inputs[i][1]),5, cv::Scalar(0,0,255), 5);
}
}
double yAxis250 = (NN.w_1 * 250 + NN.w_3) / (-1 * NN.w_2);
double yAxisValue250 = 0.0;
if(yAxis250<250 && yAxis250>-250)
{
yAxisValue250 = yAxis250;
}
else if (yAxis250>=250) {
yAxisValue250 = 250;
}
else {
yAxisValue250 = -250;
}
double yAxis_250 = (NN.w_1 * -250 + NN.w_3) / (-1 * NN.w_2);
double yAxisValue_250 = 0.0;
if(yAxis_250<250 && yAxis_250>-250)
{
yAxisValue_250 = yAxis_250;
}
else if (yAxis_250>=250) {
yAxisValue_250 = 250;
}
else {
yAxisValue_250 = -250;
}
if(NN.w_1 != 0)
{
double xAxis250 = (NN.w_2 * yAxisValue250 + NN.w_3) / (-1 * NN.w_1);
double xAxis_250 = (NN.w_2 * yAxisValue_250 + NN.w_3) / (-1 * NN.w_1);
cv::line(graph, cv::Point(xAxis250 + 250, 250 - yAxisValue250), cv::Point(xAxis_250 + 250, 250 - yAxisValue_250),cv::Scalar(255,0,0),3,cv::LINE_AA);
}
else {
cv::line(graph, cv::Point(0, 250 - yAxisValue250), cv::Point(500, 250 - yAxisValue_250),cv::Scalar(255,0,0),3,cv::LINE_AA);
}
cv::imshow("Plot",graph);
cv::waitKey(0);
return 0;
}