English | 简体中文
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishes the deployment of RobustVideoMatting on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/matting/rvm/python
# Download RobustVideoMatting model files, test images and videos
## Original ONNX Model
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_fp32.onnx
## Specially process the ONNX model for loading TRT
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_trt.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4
# CPU inference
## image
python infer.py --model rvm_mobilenetv3_fp32.onnx --image matting_input.jpg --bg matting_bgr.jpg --device cpu
## video
python infer.py --model rvm_mobilenetv3_fp32.onnx --video video.mp4 --bg matting_bgr.jpg --device cpu
# GPU inference
## image
python infer.py --model rvm_mobilenetv3_fp32.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu
## video
python infer.py --model rvm_mobilenetv3_fp32.onnx --video video.mp4 --bg matting_bgr.jpg --device gpu
# TRT inference
## image
python infer.py --model rvm_mobilenetv3_trt.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
## video
python infer.py --model rvm_mobilenetv3_trt.onnx --video video.mp4 --bg matting_bgr.jpg --device gpu --use_trt True
The visualized result after running is as follows
fd.vision.matting.RobustVideoMatting(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
RobustVideoMatting model loading and initialization, among which model_file is the exported ONNX model format
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. ONNX format by default
RobustVideoMatting.predict(input_image)Model prediction interface. Input images and output matting results.
Parameter
- input_image(np.ndarray): Input data in HWC or BGR format
Return
Return
fastdeploy.vision.MattingResult
structure. Refer to Vision Model Prediction Results for the description of the structure.