forked from Chaogan-Yan/REST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rest_ResliceImage.m
executable file
·78 lines (62 loc) · 3.71 KB
/
rest_ResliceImage.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
function [OutVolume] = rest_ResliceImage(InputFile,OutputFile,NewVoxSize,hld, TargetSpace)
% FORMAT [OutVolume] = y_ResliceImage(InputFile,OutputFile,NewVoxSize,hld, TargetSpace)
% Input:
% InputFile - input filename
% OutputFile - output filename
% NewVoxSize - 1x3 matrix of new vox size.
% hld - interpolation method. 0: Nearest Neighbour. 1: Trilinear.
% TargetSpace - Define the target space. 'ImageItself': defined by the image itself (corresponds to the new voxel size); 'XXX.img': defined by a target image 'XXX.img' (the NewVoxSize parameter will be discarded in such a case).
% Output:
% OutVolume The resliced output volume
% And the resliced image file stored in OutputFile
% Example: y_Reslice('D:\Temp\mean.img','D:\Temp\mean3x3x3.img',[3 3 3],1,'ImageItself')
% This was used to reslice the source image 'D:\Temp\mean.img' to a
% resolution as 3mm*3mm*3mm by trilinear interpolation and save as 'D:\Temp\mean3x3x3.img'.
%__________________________________________________________________________
% Written by YAN Chao-Gan 090302 for DPARSF. Referenced from spm_reslice.m in SPM5.
% State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China, 100875
% ycg.yan@gmail.com
%__________________________________________________________________________
% Revised by YAN Chao-Gan 100401. Fixed a bug while calculating the new dimension.
% Revised by YAN Chao-Gan 120229. Simplified the processing.
% Last Revised by YAN Chao-Gan 121214. Fixed the brain edge artifact when reslice to a bigger FOV. Apply a mask from the source image: don't extend values to outside brain.
if nargin<=4
TargetSpace='ImageItself';
end
if ~strcmpi(TargetSpace,'ImageItself')
[RefData, RefHead] = rest_ReadNiftiImage(TargetSpace,1);
mat=RefHead.mat;
dim=RefHead.dim;
else
[RefData, RefHead] = rest_ReadNiftiImage(InputFile);
origin=RefHead.mat(1:3,4);
origin=origin+[RefHead.mat(1,1);RefHead.mat(2,2);RefHead.mat(3,3)]-[NewVoxSize(1)*sign(RefHead.mat(1,1));NewVoxSize(2)*sign(RefHead.mat(2,2));NewVoxSize(3)*sign(RefHead.mat(3,3))];
origin=round(origin./NewVoxSize').*NewVoxSize';
mat = [NewVoxSize(1)*sign(RefHead.mat(1,1)) 0 0 origin(1)
0 NewVoxSize(2)*sign(RefHead.mat(2,2)) 0 origin(2)
0 0 NewVoxSize(3)*sign(RefHead.mat(3,3)) origin(3)
0 0 0 1 ];
dim=(RefHead.dim-1).*diag(RefHead.mat(1:3,1:3))';
dim=floor(abs(dim./NewVoxSize))+1;
end
[SourceData SourceHead]=rest_ReadNiftiImage(InputFile);
[x1,x2,x3] = ndgrid(1:dim(1),1:dim(2),1:dim(3));
d = [hld*[1 1 1]' [1 1 0]'];
C = spm_bsplinc(SourceHead, d);
v = zeros(dim);
M = inv(SourceHead.mat)*mat; % M = inv(mat\SourceHead.mat) in spm_reslice.m
y1 = M(1,1)*x1+M(1,2)*x2+(M(1,3)*x3+M(1,4));
y2 = M(2,1)*x1+M(2,2)*x2+(M(2,3)*x3+M(2,4));
y3 = M(3,1)*x1+M(3,2)*x2+(M(3,3)*x3+M(3,4));
OutVolume = spm_bsplins(C, y1,y2,y3, d);
%Revised by YAN Chao-Gan 121214. Apply a mask from the source image: don't extend values to outside brain.
tiny = 5e-2; % From spm_vol_utils.c
Mask = true(size(y1));
Mask = Mask & (y1 >= (1-tiny) & y1 <= (SourceHead.dim(1)+tiny));
Mask = Mask & (y2 >= (1-tiny) & y2 <= (SourceHead.dim(2)+tiny));
Mask = Mask & (y3 >= (1-tiny) & y3 <= (SourceHead.dim(3)+tiny));
OutVolume(~Mask) = 0;
OutHead=SourceHead;
OutHead.mat = mat;
OutHead.dim(1:3) = dim;
rest_WriteNiftiImage(OutVolume,OutHead,OutputFile);