forked from icon-lab/ResViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
56 lines (51 loc) · 2.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
from util import html
if __name__ == '__main__':
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
if opt.dataset_mode=='aligned_mat':
visuals=model.get_current_visuals()
#visuals['real_A']=visuals['real_A'][:,:,0:3]
#visuals['real_B']=visuals['real_B'][:,:,0:3]
#visuals['fake_B']=visuals['fake_B'][:,:,0:3]
img_path = model.get_image_paths()
img_path[0]=img_path[0]+str(i)
elif opt.dataset_mode=='unaligned_mat':
visuals=model.get_current_visuals()
slice_select=[opt.input_nc/2,opt.input_nc/2,opt.input_nc/2]
visuals['real_A']=visuals['real_A'][:,:,slice_select]
visuals['real_B']=visuals['real_B'][:,:,slice_select]
visuals['fake_A']=visuals['fake_A'][:,:,slice_select]
visuals['fake_B']=visuals['fake_B'][:,:,slice_select]
visuals['rec_A']=visuals['rec_A'][:,:,slice_select]
visuals['rec_B']=visuals['rec_B'][:,:,slice_select]
#temp_visuals['idt_A']=temp_visuals['idt_A'][:,:,slice_select]
#temp_visuals['idt_B']=temp_visuals['idt_B'][:,:,slice_select]
img_path = model.get_image_paths()
img_path[0]=img_path[0]+str(i)
else:
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
print('%04d: process image... %s' % (i, img_path))
visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
webpage.save()