forked from icon-lab/ResViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
136 lines (129 loc) · 5.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import time
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
import numpy as np, h5py
from skimage.measure import compare_psnr as psnr
import os
def print_log(logger,message):
print(message, flush=True)
if logger:
logger.write(str(message) + '\n')
if __name__ == '__main__':
opt = TrainOptions().parse()
#Training data
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
##logger ##
save_dir = os.path.join(opt.checkpoints_dir, opt.name)
logger = open(os.path.join(save_dir, 'log.txt'), 'w+')
print_log(logger,opt.name)
logger.close()
#validation data
opt.phase='val'
data_loader_val = CreateDataLoader(opt)
dataset_val = data_loader_val.load_data()
dataset_size_val = len(data_loader_val)
print('#Validation images = %d' % dataset_size)
if opt.model=='cycle_gan':
L1_avg=np.zeros([2,opt.niter + opt.niter_decay,len(dataset_val)])
psnr_avg=np.zeros([2,opt.niter + opt.niter_decay,len(dataset_val)])
else:
L1_avg=np.zeros([opt.niter + opt.niter_decay,len(dataset_val)])
psnr_avg=np.zeros([opt.niter + opt.niter_decay,len(dataset_val)])
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
#Training step
opt.phase='train'
for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
if opt.dataset_mode=='aligned_mat':
temp_visuals=model.get_current_visuals()
visualizer.display_current_results(temp_visuals, epoch, save_result)
elif opt.dataset_mode=='unaligned_mat':
temp_visuals=model.get_current_visuals()
temp_visuals['real_A']=temp_visuals['real_A'][:,:,0:3]
temp_visuals['real_B']=temp_visuals['real_B'][:,:,0:3]
temp_visuals['fake_A']=temp_visuals['fake_A'][:,:,0:3]
temp_visuals['fake_B']=temp_visuals['fake_B'][:,:,0:3]
temp_visuals['rec_A']=temp_visuals['rec_A'][:,:,0:3]
temp_visuals['rec_B']=temp_visuals['rec_B'][:,:,0:3]
if opt.lambda_identity>0:
temp_visuals['idt_A']=temp_visuals['idt_A'][:,:,0:3]
temp_visuals['idt_B']=temp_visuals['idt_B'][:,:,0:3]
visualizer.display_current_results(temp_visuals, epoch, save_result)
else:
temp_visuals=model.get_current_visuals()
visualizer.display_current_results(temp_visuals, epoch, save_result)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
iter_data_time = time.time()
#Validaiton step
if epoch % opt.save_epoch_freq == 0:
logger = open(os.path.join(save_dir, 'log.txt'), 'a')
print(opt.dataset_mode)
opt.phase='val'
for i, data_val in enumerate(dataset_val):
#
model.set_input(data_val)
#
model.test()
#
fake_im=model.fake_B.cpu().data.numpy()
#
real_im=model.real_B.cpu().data.numpy()
#
real_im=real_im*0.5+0.5
#
fake_im=fake_im*0.5+0.5
if real_im.max() <= 0:
continue
L1_avg[epoch-1,i]=abs(fake_im-real_im).mean()
psnr_avg[epoch-1,i]=psnr(fake_im/fake_im.max(),real_im/real_im.max())
#
#
l1_avg_loss = np.mean(L1_avg[epoch-1])
#
mean_psnr = np.mean(psnr_avg[epoch-1])
#
std_psnr = np.std(psnr_avg[epoch-1])
#
print_log(logger,'Epoch %3d l1_avg_loss: %.5f mean_psnr: %.3f std_psnr:%.3f ' % \
(epoch, l1_avg_loss, mean_psnr,std_psnr))
#
print_log(logger,'')
logger.close()
#
print('saving the model at the end of epoch %d, iters %d' %(epoch, total_steps))
#
model.save('latest')
#
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()