-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
194 lines (135 loc) · 5.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import random
import torch
import scipy.sparse as sp
from torch import nn
from torch_geometric.utils import add_remaining_self_loops, degree
from torch_scatter import scatter_max, scatter_add, scatter
import os
from grakel.datasets import fetch_dataset
from grakel.kernels import ShortestPath
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def construct_knn(kernel_idx):
edge_index = [[], []]
for i in range(len(kernel_idx)):
for j in range(len(kernel_idx[i])):
edge_index[0].append(kernel_idx[i, j].item())
edge_index[1].append(i)
edge_index[1].append(kernel_idx[i, j].item())
edge_index[0].append(i)
return torch.tensor(edge_index, dtype=torch.long)
def get_kernel_knn(dataname, kernel_type, knn_nei_num):
kernel_file = './kernel/' + dataname + '_' + \
kernel_type + '_' + str(knn_nei_num) + '.txt'
if(os.path.exists(kernel_file)):
kernel_simi = torch.load(kernel_file)
else:
dataset = fetch_dataset(dataname, verbose=False)
G = dataset.data
if(dataname in ['IMDB-BINARY', 'REDDIT-BINARY']):
gk = ShortestPath(normalize=True, with_labels=False)
else:
gk = ShortestPath(normalize=True)
kernel_simi = torch.tensor(gk.fit_transform(G))
torch.save(kernel_simi, kernel_file)
kernel_idx = torch.topk(kernel_simi, k=knn_nei_num,
dim=1, largest=True)[1][:, 1:]
knn_edge_index = construct_knn(kernel_idx)
return kernel_idx, knn_edge_index
def get_class_num(imb_ratio, num_train, num_val):
c_train_num = [int(imb_ratio * num_train), num_train -
int(imb_ratio * num_train)]
c_val_num = [int(imb_ratio * num_val), num_val - int(imb_ratio * num_val)]
return c_train_num, c_val_num
def upsample(dataset):
y = torch.tensor([dataset[i].y for i in range(len(dataset))])
classes = torch.unique(y)
num_class_graph = [(y == i.item()).sum() for i in classes]
max_num_class_graph = max(num_class_graph)
chosen = []
for i in range(len(classes)):
train_idx = torch.where((y == classes[i]) == True)[0].tolist()
up_sample_ratio = max_num_class_graph / num_class_graph[i]
up_sample_num = int(
num_class_graph[i] * up_sample_ratio - num_class_graph[i])
if(up_sample_num <= len(train_idx)):
up_sample = random.sample(train_idx, up_sample_num)
else:
tmp = int(up_sample_num / len(train_idx))
up_sample = train_idx * tmp
tmp = up_sample_num - len(train_idx) * tmp
up_sample.extend(random.sample(train_idx, tmp))
chosen.extend(up_sample)
chosen = torch.tensor(chosen)
extend_data = dataset[chosen]
data = list(dataset) + list(extend_data)
return data
def find_knn_id(batch_id, kernel_idx):
knn_id = set(kernel_idx[batch_id].view(-1).tolist())
pad_knn_id = knn_id.difference(set(batch_id.tolist()))
return list(pad_knn_id)
def batch_to_gpu(batch, device):
for key in batch:
if isinstance(batch[key], list):
for i in range(len(batch[key])):
batch[key][i] = batch[key][i].to(device)
else:
batch[key] = batch[key].to(device)
return batch
def consis_loss(logps, temp=0.5):
ps = [torch.exp(p) for p in logps]
sum_p = 0.
for p in ps:
sum_p = sum_p + p
avg_p = sum_p / len(ps)
sharp_p = (torch.pow(avg_p, 1. / temp) /
torch.sum(torch.pow(avg_p, 1. / temp), dim=1, keepdim=True)).detach()
loss = 0.
for p in ps:
loss += torch.mean((p - sharp_p).pow(2).sum(1))
loss = loss / len(ps)
return 1 * loss
def embed_smote(embed, num_training_graph, y, k):
max_num_training_graph = max(num_training_graph)
classes = torch.unique(y)
embed_aug = []
y_aug = []
for i in range(len(classes)):
train_idx = torch.where((y == classes[i]) == True)[0].tolist()
c_embed = embed[train_idx]
c_dist = torch.cdist(c_embed, c_embed, p=2)
# different from original smote, we also include itself in case of no other nodes to use
c_min_idx = torch.topk(c_dist, min(k, c_dist.size(0)), largest=False)[
1][:, :].tolist()
up_sample_ratio = max_num_training_graph / \
num_training_graph[i]
up_sample_num = int(
num_training_graph[i] * up_sample_ratio - num_training_graph[i])
tmp = 1
head_list = list(np.arange(0, len(train_idx)))
while(tmp <= up_sample_num):
head_id = random.choice(head_list)
tail_id = random.choice(c_min_idx[head_id])
delta = torch.rand(1).to(c_embed.device)
new_embed = torch.lerp(
c_embed[head_id], c_embed[tail_id], delta)
embed_aug.append(new_embed)
y_aug.append(classes[i])
tmp += 1
if(embed_aug == []):
return embed, y
return torch.stack(embed_aug), torch.stack(y_aug).to(embed.device)
def homophily(edge_index, y):
degree_cal = degree(edge_index[1], num_nodes=y.size(0))
edge_homo = (y[edge_index[0]] == y[edge_index[1]]
).sum().item() / edge_index.size(1)
tmp = y[edge_index[0]] == y[edge_index[1]]
node_homo = scatter(tmp, edge_index[1], dim=0, dim_size=y.size(
0), reduce='add') / degree_cal
return edge_homo, node_homo.mean()