-
Notifications
You must be signed in to change notification settings - Fork 35
/
transfer.py
472 lines (427 loc) · 18.2 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#!/usr/bin/env python
# coding=utf-8
import os
import os.path as osp
import glob
import time
import warnings
import h5py
import argparse
import numpy as np
np.set_printoptions(suppress=True)
import open3d as o3d
import random
import pickle as pkl
from tqdm import tqdm
from obj_loader import TriangleMesh
# ***** 需要你补充的变量) ******
manual_model_to_smpl = {}
#(e.g.) manual_model_to_smpl = {0: 0, 1: 3, 2: 2, 3: 1, 4: 6, 5: 5, 6: 4, 7: 9, 8: 8, 9: 7, 10: 12, 11: 14, 12: 13, 21: 19, 22: 18, 23: 21, 24: 20, 16: 17, 17: 16}
smpl_joint_names = [
"hips",
"leftUpLeg",
"rightUpLeg",
"spine",
"leftLeg",
"rightLeg",
"spine1",
"leftFoot",
"rightFoot",
"spine2",
"leftToeBase",
"rightToeBase",
"neck",
"leftShoulder",
"rightShoulder",
"head",
"leftArm",
"rightArm",
"leftForeArm",
"rightForeArm",
"leftHand",
"rightHand",
"leftHandIndex1"
"rightHandIndex1",
]
def _lazy_get_model_to_smpl(_index2joint):
"""
lazy mapper, which maps SMPL joints to character joints directly by their names
"""
mappings = {}
lower_smpl_joint_names = [name.lower() for name in smpl_joint_names]
for index, joint_name in _index2joint.items():
if joint_name.lower() not in lower_smpl_joint_names:
continue
smpl_index = lower_smpl_joint_names.index(joint_name.lower())
mappings[index] = smpl_index
return mappings
def _get_extra_uv_lines(infofile):
"""
parse lines that contain uv coords and detailed face information from *file generated by mayapy*
*if you do no use model downloaded elsewhere, you do not need to use this function*
"""
infile = infofile.replace(".txt", "_intermediate.obj")
assert osp.exists(infile), "Can not find file {}, check whether you are using model downloaded from the internet. If so, run maya parser first".format(infile)
lines = open(infile, "r").readlines()
uv_lines = []
for line in lines:
line = line.strip('\n').strip()
if 'vt' in line or 'mtl' in line or 'f' in line or 'vn' in line:
uv_lines.append(line)
return uv_lines
def clean_info(filename):
"""
some fbx downloaded from the internet has strange pattern, clean that
"""
with open(filename, "r") as f:
content = f.read().strip()
start = content.find('mix')
end = content.find(':')
if start == -1 or end == -1:
return
pattern = content[start:end+1]
# print(pattern)
content = content.replace(pattern, "")
with open(filename, "w") as f:
f.write(content)
print('clean finished')
def clean_obj(filename):
"""
maya save fbx script need clean obj(mesh saved by open3d has unexpected comments and vertex colors, which is not supported by maya)
"""
lines = open(filename, "r").readlines()
lines = [line for line in lines if '#' not in line]
out_lines = []
for line in lines:
line = line.strip('\n').strip()
line = " ".join(line.split(" ")[:4])
out_lines.append(line)
with open(filename, "w") as f:
f.write('\n'.join(out_lines))
def forward_kinematics():
pass
def with_zeros(x):
return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]])))
def pack(x):
return np.dstack((np.zeros((x.shape[0], 4, 3)), x))
def rodrigues(r):
"""
util function which converts rotation vectors into rotation matrices
"""
theta = np.linalg.norm(r, axis=(1, 2), keepdims=True)
# avoid zero divide
theta = np.maximum(theta, np.finfo(np.float64).eps)
r_hat = r / theta
cos = np.cos(theta)
z_stick = np.zeros(theta.shape[0])
m = np.dstack([
z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1],
r_hat[:, 0, 2], z_stick, -r_hat[:, 0, 0],
-r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick]
).reshape([-1, 3, 3])
i_cube = np.broadcast_to(
np.expand_dims(np.eye(3), axis=0),
[theta.shape[0], 3, 3]
)
A = np.transpose(r_hat, axes=[0, 2, 1])
B = r_hat
dot = np.matmul(A, B)
R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m
return R
def transfer_given_pose(human_pose, infoname, is_root_rotated=False):
"""
core function of human transfer, given human pose(24 x 3, rotation vectors), character rig info(.txt), character T-posed mesh(.obj), perform transfer
firstly parse rig info file and obtain the mapping from joint name to joint index and construct the kinematic chain
secondly parse T-posed skeleton and skinning weight
thirdly use forward kinematics to transform T-posed skeleton into posed character skeleton
finally use blending weights to obtain posed mesh
"""
lines = open(infoname).readlines()
meshname = infoname.replace(".txt", ".obj")
inmesh = o3d.io.read_triangle_mesh(meshname)
v_posed = np.array(inmesh.vertices)
custom_inmesh = TriangleMesh(meshname)
inmesh.vertices = o3d.utility.Vector3dVector(custom_inmesh.vertices)
inmesh.triangles = o3d.utility.Vector3iVector(custom_inmesh.triangles)
v_posed = custom_inmesh.vertices
hier = {}
joint2index = {}
index = 0
# parse rig info file and obtain kinematic chain(hierarchical structure)
for line in lines:
line = line.strip('\n').strip()
if line[:4] != 'hier':
continue
splits = line.split(' ')
parent_name = splits[1]
child_name = splits[2]
if parent_name not in joint2index:
joint2index[parent_name] = index
index += 1
if child_name not in joint2index:
joint2index[child_name] = index
index += 1
if parent_name not in hier:
hier[parent_name] = [child_name]
else:
hier[parent_name].append(child_name)
index2joint = {v: k for k, v in joint2index.items()}
hier_index = {}
for k, v in hier.items():
hier_index[joint2index[k]] = [joint2index[vv] for vv in v]
parents = list(hier_index.keys())
children = []
for v in hier_index.values():
children.extend(v)
root = [item for item in parents if item not in children]
assert len(root) == 1
root = root[0]
# reorganize the index mapping to ensure that along each chain,
# from root node to leaf node, the index number increases
new_hier = {}
new_joint2index = {index2joint[root]: 0}
top_level = [root]
index = 1
for item in top_level:
if item not in hier_index:
# print('continue')
continue
for child in hier_index[item]:
child_name = index2joint[child]
if child_name not in new_joint2index:
new_joint2index[child_name] = index
index += 1
if new_joint2index[index2joint[item]] not in new_hier:
new_hier[new_joint2index[index2joint[item]]] = []
new_hier[new_joint2index[index2joint[item]]].append(new_joint2index[child_name])
top_level.append(child)
print('joint names and their indices in the 3d character model')
print(new_joint2index)
print('kinetree table(kinematics connectivity) in the 3d character model')
print(new_hier)
new_index2joint = {index: joint for joint, index in new_joint2index.items()}
kinetree_table = [[-1, 0]]
for k, v in new_hier.items():
for vv in v:
kinetree_table.append([k, vv])
kinetree_table = np.array(kinetree_table).reshape(-1, 2).T
# hierachical information, from which we can obtain kinematic chain
hier_lines = [line for line in lines if 'hier' in line]
skin_lines = [line for line in lines if 'skin' in line]
num_joints = len(list(new_joint2index.keys()))
num_vertices = len(skin_lines)
# parse skinning weights from rig info file(.txt)
weights = np.zeros((num_joints, num_vertices), dtype=np.float32)
for line in skin_lines:
line = line.strip().strip('\n')
splits = line.split(" ")
if len(splits) % 2 != 0:
print('strange skin line found, please use other 3D models')
return None, None
vertex_index = int(splits[1])
for i in range(2, len(splits), 2):
joint_name = splits[i]
weight = float(splits[i+1])
weights[new_joint2index[joint_name]][vertex_index] = weight
# parse the T pose-skeleton
joint_lines = [line for line in lines if 'joints' in line and line[:6] == 'joints']
joints = np.zeros((num_joints, 3), dtype=np.float32)
for joint_line in joint_lines:
joint_line = joint_line.strip().strip('\n')
splits = joint_line.split(' ')
name = splits[1]
x = float(splits[2]); y = float(splits[3]); z = float(splits[4])
joint_index = new_joint2index[name]
joints[joint_index] = np.array([x, y, z])
# child to index
id_to_col = {
kinetree_table[1, i]: i for i in range(kinetree_table.shape[1])
}
parent = {
i: id_to_col[kinetree_table[0, i]]
for i in range(1, kinetree_table.shape[1])
}
poses = np.zeros((1, num_joints, 3), dtype=np.float32)
lazy_model_to_smpl = _lazy_get_model_to_smpl(new_index2joint)
# if len(lazy_model_to_smpl) < 19:
# print("Please set mapping manually")
# return None, None
# lazy mapper, directly match joints betwen SMPL and 3D character model by their names
# if len(lazy_model_to_smpl) < 19:
# warn_info = "Lazy mapper can only map {} joints between 3D model and SMPL, you may map manually".format(len(lazy_model_to_smpl))
# print(warn_info)
# print("lazy mapper and manual mapper obtains {}/{} joints respectively, choose the larger one".format(len(lazy_model_to_smpl), len(manual_model_to_smpl)))
model_to_smpl = lazy_model_to_smpl if len(lazy_model_to_smpl) > len(manual_model_to_smpl) else manual_model_to_smpl
# model_to_smpl = manual_model_to_smpl
# ******* You need to perform mapping for at least 10 joints, otherwise you will receive this assertion ******
assert len(model_to_smpl) >= 10, "Please map manually and ensure that at least 10 joints are matched"
for model_index, smpl_index in model_to_smpl.items():
if smpl_index == 0 and not is_root_rotated:
continue
poses[:, model_index] = human_pose[smpl_index]
# print(joints.shape, kinetree_table.shape)
# obtain rotation matrices from rotation vectors
R = rodrigues(poses.reshape(-1, 1, 3))
# forward kinematics process, calculate along the kinematic chain
G = np.empty((kinetree_table.shape[1], 4, 4))
G[0] = with_zeros(np.hstack((R[0], joints[0, :].reshape([3, 1]))))
for i in range(1, kinetree_table.shape[1]):
G[i] = G[parent[i]].dot(
with_zeros(
np.hstack(
[R[i],((joints[i, :]-joints[parent[i],:]).reshape([3,1]))]
)
)
)
new_joints = G[:, :3, 3]
new_joint_lines = []
for idx, name in enumerate(list(new_joint2index.keys())):
new_joint_lines.append("joints " + name + " {:.8f} {:.8f} {:.8f}".format(new_joints[idx, 0], new_joints[idx, 1], new_joints[idx, 2]))
# obtain joint offset from T-pose
G = G - pack(
np.matmul(
G,
np.hstack([joints, np.zeros([num_joints, 1])]).reshape([num_joints, 4, 1])
)
)
# linear blend skinning process, refer to SMPL paper for more details
T = np.tensordot(weights.T, G, axes=[[1], [0]])
rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1])))
v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3]
root_line = ["root {}".format(new_index2joint[0])]
out_lines = new_joint_lines + root_line + skin_lines + hier_lines
outinfo = [line.strip('\n') for line in out_lines]
outmesh = o3d.geometry.TriangleMesh(inmesh)
outmesh.vertices = o3d.utility.Vector3dVector(v)
# finally save the results for submission. Note that the logic here only saves connectivity. You still need to run vis.py to record visualization
# if not osp.exists(osp.join("results", infoname.replace(".txt", ".pkl").replace('/', '_'))):
os.makedirs("./results", exist_ok=True)
save_dict = {
"infoname": infoname,
"hier": new_hier,
"name2index": new_joint2index,
"model2smpl": model_to_smpl
}
with open(osp.join("results", str(infoname).replace(".txt", ".pkl").replace('/', '_')), "wb") as f:
pkl.dump(save_dict, f)
return outinfo, outmesh
def transfer_one_frame(infofile, use_online_model=False):
"""
transfer human pose in one frame to 3D character
infofile: riginfo file for one specific character model
"""
np.random.seed(2021)
# randomly sample one frame and obtain its pose
with open("./pose_sample.pkl", "rb") as f:
# poses shape: (N, 24, 3)
poses = pkl.load(f)
random_index = np.random.randint(0, len(poses))
human_pose = poses[random_index]
outinfo, outmesh = transfer_given_pose(human_pose, infofile)
if use_online_model:
extra_uv_lines = _get_extra_uv_lines(infofile)
else:
extra_uv_lines = None
if outinfo is not None:
out_infofile = infofile.split('.')[0] + '_' + str(random_index) + '_out.txt'
out_objfile = infofile.split('.')[0] + '_' + str(random_index) + '_out.obj'
with open(out_infofile, 'w') as fp:
fp.write('\n'.join(outinfo))
with open(out_objfile, 'w') as fp:
for v in np.asarray(outmesh.vertices):
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
if use_online_model:
# save texture uv coords and faces to
for uv_line in extra_uv_lines:
fp.write(uv_line + '\n')
else:
# for f in np.asarray(outmesh.triangles) + 1:
for f in np.asarray(outmesh.triangles):
fp.write('f %d %d %d\n' % (f[0], f[1], f[2]))
print('transferred finished, save to {} and {} with reference to human pose {}.obj'.format(out_infofile, out_objfile, random_index))
def transfer_one_sequence(infofile, seqfile, use_online_model=False):
"""
transfer one sequence of human poses to 3D characters
infofile: riginfo file for one specific character model
seqfile: sequence file that contains the sequential human pose
"""
np.random.seed(2021)
with open(seqfile, "rb") as f:
human_poses = pkl.load(f)['pose']
savedir = seqfile.replace("info", "obj").split('.')[0] + '_3dmodel'
os.makedirs(savedir, exist_ok=True)
if use_online_model:
extra_uv_lines = _get_extra_uv_lines(infofile)
# create symlink
for _file in os.listdir(os.path.dirname(infofile)):
# for texture or material
if _file.endswith(".png") or _file.endswith(".mtl"):
src_path = os.path.abspath(os.path.join(os.path.dirname(infofile), _file))
dst_path = os.path.join(savedir, _file)
if not osp.exists(dst_path):
os.symlink(src_path, dst_path)
else:
extra_uv_lines = None
tbar = tqdm(range(len(human_poses)))
for idx in tbar:
human_pose = human_poses[idx]
outinfo, outmesh = transfer_given_pose(human_pose, infofile, is_root_rotated=True)
if outinfo is not None:
out_infofile = osp.join(savedir, f"{idx}.txt")
out_objfile = out_infofile.replace(".txt", '.obj')
with open(out_infofile, 'w') as fp:
fp.write('\n'.join(outinfo))
with open(out_objfile, 'w') as fp:
for v in np.asarray(outmesh.vertices):
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
if use_online_model:
# save texture uv coords and faces to
for uv_line in extra_uv_lines:
fp.write(uv_line + '\n')
else:
# for f in np.asarray(outmesh.triangles) + 1:
for f in np.asarray(outmesh.triangles):
fp.write('f %d %d %d\n' % (f[0], f[1], f[2]))
else:
print('map the 3D model to SMPL first, you can first try one frame setting')
break
def parse_fbx(fbx_name):
"""
parse fbx(downloaded from the internet) into mesh(.obj) and rig information(.txt, skinning weight, kinematic tree)
refer to ./maya_fbx_parser.py for more details
"""
fbx_files = glob.glob(osp.join(fbx_name, "*.fbx")) if osp.isdir(fbx_name) else [fbx_name]
for fbx_file in tqdm(fbx_files):
info_file = fbx_file.replace(".fbx", ".txt")
obj_file = fbx_file.replace(".fbx", ".obj")
if not osp.exists(info_file) or not osp.exists(obj_file):
os.system("mayapy fbx_parser.py {} > /dev/null 2>&1".format(fbx_file))
if not osp.exists(info_file) or not osp.exists(obj_file):
print("maya_fbx_parser: some error occurred, fail to extract {}".format(info_file))
continue
clean_info(info_file)
# print('parse into {} and {}'.format(info_file, obj_file))
def save_fbx(info_files):
"""
save rig info(.txt) and mesh(.obj) into fbx model, mesh file is found by replace suffix in rig info name
refer to ./maya_save_fbx.py for more details
"""
for info_file in info_files:
os.system("mayapy maya_save_fbx.py {} > /dev/null 2>&1".format(info_file))
if not osp.exists(info_file.replace(".txt", ".fbx")):
print("maya_save_fbx: some error occurred, fail to extract {}".format(out_infoname.replace(".txt", "*.fbx")))
continue
print('save to', info_file.replace(".txt", ".fbx"))
if __name__ == '__main__':
# use fbx parser to paser fbx into obj, rig info (mayapy needed, you need to install and configure maya first)
# parse_fbx("fbx")
# infofiles = [osp.join("fbx", _file) for _file in os.listdir("fbx") if 'out' not in _file and _file.endswith(".txt")]
# for infofile in infofiles:
# transfer_one_frame(infofile)
# for provided models
# transfer_one_frame("fbx/10559.txt")
# transfer_one_sequence("fbx/10559.txt", "info_seq_5.pkl")
# for possible model downloaded online
# clean_info("samples/Ch14_nonPBR.txt")
transfer_one_frame("samples/Ch14_nonPBR.txt", use_online_model=True)
# transfer_one_sequence("samples/Ch14_nonPBR.txt", "info_seq_5.pkl", use_online_model=True)