-
Notifications
You must be signed in to change notification settings - Fork 35
/
vis.py
104 lines (85 loc) · 4.04 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
# coding=utf-8
import time
import os
import os.path as osp
import warnings
import glob
import numpy as np
import cv2
import open3d as o3d
from tqdm import tqdm
use_online_model = False
if not use_online_model and int(o3d.__version__.split('.')[1]) < 11:
warnings.warn('You are using open3d below 0.11.0, which may cause black images in saving screen captures' + \
'you can use a video recorder to save the visualization, or switch to a newer version')
elif use_online_model:
warnings.warn("You are using 3d model downloaded elsewhere; to see the texture with open3d, you need to" + \
"ensure that your open3d is below 0.11.0(e.g. 0.10.0); but this will cause open3d fail to save the" + \
"visualization, so you shall need to use other video recording tool; Also, rendering process may be" + \
"a bit slow, wait with patience to prove your effort and get the bonus :)" )
savedir = "vis/"
os.makedirs(savedir, exist_ok=True)
save_video_path = osp.join(savedir, "vis.mp4")
human_obj_dir = "./obj_seq_5"
visualizer = o3d.visualization.Visualizer()
visualizer.create_window('open3d')
ctr = visualizer.get_view_control()
model_obj_dir = human_obj_dir + '_3dmodel'
human_obj_files = sorted(glob.glob(osp.join(human_obj_dir, "*.obj")), key=lambda x: int(osp.basename(x).split('.')[0]))
model_obj_files = sorted(glob.glob(osp.join(model_obj_dir, "*.obj")), key=lambda x: int(osp.basename(x).split('.')[0]))
mesh = o3d.io.read_triangle_mesh(model_obj_files[0])
mesh.vertex_colors = o3d.utility.Vector3dVector(np.asarray(mesh.vertex_colors) / 3)
dist = mesh.get_max_bound() - mesh.get_min_bound()
mesh.vertices = o3d.utility.Vector3dVector(np.asarray(mesh.vertices) / dist)
mesh.translate(-mesh.get_center())
human_mesh = o3d.io.read_triangle_mesh(human_obj_files[0])
human_mesh.translate(-human_mesh.get_center() + [1.5, 0.0, 0.0])
human_mesh.vertex_colors = o3d.utility.Vector3dVector(np.asarray(human_mesh.vertex_colors) / 3)
visualizer.add_geometry(mesh)
visualizer.add_geometry(human_mesh)
tbar = tqdm(range(1, len(model_obj_files)))
def set_color(mesh):
vertices = np.asarray(mesh.vertices)
min_vals = vertices.min(axis=0, keepdims=True)
max_vals = vertices.max(axis=0, keepdims=True)
colors = (vertices - min_vals) / (max_vals - min_vals)
# colors = colors[..., ::-1]
mesh.vertex_colors = o3d.utility.Vector3dVector(colors)
return mesh
def compose_video():
_files = sorted(glob.glob(osp.join(savedir, "*.png")), key=lambda x: int(osp.basename(x).split('.')[0]))
h, w = 480, 640
video_writer = cv2.VideoWriter(save_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 24, (w, h))
for _file in tqdm(_files, total=len(_files)):
img = cv2.imread(_file)
img = cv2.resize(img, (w, h))
video_writer.write(img)
video_writer.release()
print('save video to', save_video_path)
for idx in tbar:
human_obj_file = human_obj_files[idx]
model_obj_file = model_obj_files[idx]
mesh.vertices = o3d.io.read_triangle_mesh(model_obj_file).vertices
if idx == 0:
dist = mesh.get_max_bound() - mesh.get_min_bound()
mesh.vertices = o3d.utility.Vector3dVector(np.asarray(mesh.vertices) / dist)
human_mesh.vertices = o3d.io.read_triangle_mesh(human_obj_file).vertices
mesh.translate(-mesh.get_center())
human_mesh.translate(-human_mesh.get_center() + [1.5, 0.0, 0.0])
# we already have texture for online model, skip
if not use_online_model:
mesh = set_color(mesh)
human_mesh = set_color(human_mesh)
visualizer.update_geometry(mesh)
visualizer.update_geometry(human_mesh)
if not use_online_model:
time.sleep(0.02)
visualizer.poll_events()
# visualizer.capture_screen_image(osp.join("vis", "{}.png".format(idx)), do_render=True)
vis_save_path = osp.join(savedir, str(idx) + ".png")
# img = np.asarray(visualizer.capture_screen_float_buffer()).copy()
visualizer.capture_screen_image(vis_save_path, True)
visualizer.run()
visualizer.destroy_window()
compose_video()