forked from NVlabs/DG-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
executable file
·682 lines (615 loc) · 32.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from networks import AdaINGen, MsImageDis, VAEGen
from reIDmodel import ft_net, ft_netAB, PCB
from utils import weights_init, get_model_list, vgg_preprocess, load_vgg16, get_scheduler
from torch.autograd import Variable
import torch
import torch.nn as nn
import torchvision
import copy
import os
import cv2
import numpy as np
from random_erasing import RandomErasing
from PIL import Image
import random
import yaml
#fp16
try:
import apex
from apex import amp, optimizers
from apex.fp16_utils import *
except ImportError:
print('This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
pass
def to_gray(half=False): #simple
def forward(x):
x = torch.mean(x, dim=1, keepdim=True)
if half:
x = x.half()
return x
return forward
def to_edge(x):
x = x.data.cpu()
out = torch.FloatTensor(x.size(0), x.size(2), x.size(3))
for i in range(x.size(0)):
xx = recover(x[i,:,:,:]) # 3 channel, 256x128x3
xx = cv2.cvtColor(xx, cv2.COLOR_RGB2GRAY) # 256x128x1
xx = cv2.Canny(xx, 10, 200) #256x128
xx = xx/255.0 - 0.5 # {-0.5,0.5}
xx += np.random.randn(xx.shape[0],xx.shape[1])*0.1 #add random noise
xx = torch.from_numpy(xx.astype(np.float32))
out[i,:,:] = xx
out = out.unsqueeze(1)
return out.cuda()
def scale2(x):
if x.size(2) > 128: # do not need to scale the input
return x
x = torch.nn.functional.upsample(x, scale_factor=2, mode='nearest') #bicubic is not available for the time being.
return x
def recover(inp):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = inp * 255.0
inp = np.clip(inp, 0, 255)
inp = inp.astype(np.uint8)
return inp
def train_bn(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.train()
def fliplr(img):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3)-1,-1,-1).long().cuda() # N x C x H x W
img_flip = img.index_select(3,inv_idx)
return img_flip
def update_teacher(model_s, model_t, alpha=0.999):
for param_s, param_t in zip(model_s.parameters(), model_t.parameters()):
param_t.data.mul_(alpha).add_(1 - alpha, param_s.data)
def predict_label(teacher_models, inputs, num_class, alabel, slabel, teacher_style=0):
# teacher_style:
# 0: Our smooth dynamic label
# 1: Pseudo label, hard dynamic label
# 2: Conditional label, hard static label
# 3: LSRO, static smooth label
# 4: Dynamic Soft Two-label
# alabel is appearance label
if teacher_style == 0:
count = 0
sm = nn.Softmax(dim=1)
for teacher_model in teacher_models:
_, outputs_t1 = teacher_model(inputs)
outputs_t1 = sm(outputs_t1.detach())
_, outputs_t2 = teacher_model(fliplr(inputs))
outputs_t2 = sm(outputs_t2.detach())
if count==0:
outputs_t = outputs_t1 + outputs_t2
else:
outputs_t = outputs_t * opt.alpha # old model decay
outputs_t += outputs_t1 + outputs_t2
count +=2
elif teacher_style == 1: # dynamic one-hot label
count = 0
sm = nn.Softmax(dim=1)
for teacher_model in teacher_models:
_, outputs_t1 = teacher_model(inputs)
outputs_t1 = sm(outputs_t1.detach()) # change softmax to max
_, outputs_t2 = teacher_model(fliplr(inputs))
outputs_t2 = sm(outputs_t2.detach())
if count==0:
outputs_t = outputs_t1 + outputs_t2
else:
outputs_t = outputs_t * opt.alpha # old model decay
outputs_t += outputs_t1 + outputs_t2
count +=2
_, dlabel = torch.max(outputs_t.data, 1)
outputs_t = torch.zeros(inputs.size(0), num_class).cuda()
for i in range(inputs.size(0)):
outputs_t[i, dlabel[i]] = 1
elif teacher_style == 2: # appearance label
outputs_t = torch.zeros(inputs.size(0), num_class).cuda()
for i in range(inputs.size(0)):
outputs_t[i, alabel[i]] = 1
elif teacher_style == 3: # LSRO
outputs_t = torch.ones(inputs.size(0), num_class).cuda()
elif teacher_style == 4: #Two-label
count = 0
sm = nn.Softmax(dim=1)
for teacher_model in teacher_models:
_, outputs_t1 = teacher_model(inputs)
outputs_t1 = sm(outputs_t1.detach())
_, outputs_t2 = teacher_model(fliplr(inputs))
outputs_t2 = sm(outputs_t2.detach())
if count==0:
outputs_t = outputs_t1 + outputs_t2
else:
outputs_t = outputs_t * opt.alpha # old model decay
outputs_t += outputs_t1 + outputs_t2
count +=2
mask = torch.zeros(outputs_t.shape)
mask = mask.cuda()
for i in range(inputs.size(0)):
mask[i, alabel[i]] = 1
mask[i, slabel[i]] = 1
outputs_t = outputs_t*mask
else:
print('not valid style. teacher-style is in [0-3].')
s = torch.sum(outputs_t, dim=1, keepdim=True)
s = s.expand_as(outputs_t)
outputs_t = outputs_t/s
return outputs_t
######################################################################
# Load model
#---------------------------
def load_network(network, name):
save_path = os.path.join('./models',name,'net_last.pth')
network.load_state_dict(torch.load(save_path))
return network
def load_config(name):
config_path = os.path.join('./models',name,'opts.yaml')
with open(config_path, 'r') as stream:
config = yaml.load(stream)
return config
class DGNet_Trainer(nn.Module):
def __init__(self, hyperparameters):
super(DGNet_Trainer, self).__init__()
lr_g = hyperparameters['lr_g']
lr_d = hyperparameters['lr_d']
ID_class = hyperparameters['ID_class']
if not 'apex' in hyperparameters.keys():
hyperparameters['apex'] = False
self.fp16 = hyperparameters['apex']
# Initiate the networks
# We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False.
self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16 = False) # auto-encoder for domain a
self.gen_b = self.gen_a # auto-encoder for domain b
if not 'ID_stride' in hyperparameters.keys():
hyperparameters['ID_stride'] = 2
if hyperparameters['ID_style']=='PCB':
self.id_a = PCB(ID_class)
elif hyperparameters['ID_style']=='AB':
self.id_a = ft_netAB(ID_class, stride = hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool'])
else:
self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now
self.id_b = self.id_a
self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16 = False) # discriminator for domain a
self.dis_b = self.dis_a # discriminator for domain b
# load teachers
if hyperparameters['teacher'] != "":
teacher_name = hyperparameters['teacher']
print(teacher_name)
teacher_names = teacher_name.split(',')
teacher_model = nn.ModuleList()
teacher_count = 0
for teacher_name in teacher_names:
config_tmp = load_config(teacher_name)
if 'stride' in config_tmp:
stride = config_tmp['stride']
else:
stride = 2
model_tmp = ft_net(ID_class, stride = stride)
teacher_model_tmp = load_network(model_tmp, teacher_name)
teacher_model_tmp.model.fc = nn.Sequential() # remove the original fc layer in ImageNet
teacher_model_tmp = teacher_model_tmp.cuda()
if self.fp16:
teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1")
teacher_model.append(teacher_model_tmp.cuda().eval())
teacher_count +=1
self.teacher_model = teacher_model
if hyperparameters['train_bn']:
self.teacher_model = self.teacher_model.apply(train_bn)
self.instancenorm = nn.InstanceNorm2d(512, affine=False)
display_size = int(hyperparameters['display_size'])
# RGB to one channel
if hyperparameters['single']=='edge':
self.single = to_edge
else:
self.single = to_gray(False)
# Random Erasing when training
if not 'erasing_p' in hyperparameters.keys():
hyperparameters['erasing_p'] = 0
self.single_re = RandomErasing(probability=hyperparameters['erasing_p'], mean=[0.0, 0.0, 0.0])
if not 'T_w' in hyperparameters.keys():
hyperparameters['T_w'] = 1
# Setup the optimizers
beta1 = hyperparameters['beta1']
beta2 = hyperparameters['beta2']
dis_params = list(self.dis_a.parameters()) #+ list(self.dis_b.parameters())
gen_params = list(self.gen_a.parameters()) #+ list(self.gen_b.parameters())
self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
# id params
if hyperparameters['ID_style']=='PCB':
ignored_params = (list(map(id, self.id_a.classifier0.parameters() ))
+list(map(id, self.id_a.classifier1.parameters() ))
+list(map(id, self.id_a.classifier2.parameters() ))
+list(map(id, self.id_a.classifier3.parameters() ))
)
base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters())
lr2 = hyperparameters['lr2']
self.id_opt = torch.optim.SGD([
{'params': base_params, 'lr': lr2},
{'params': self.id_a.classifier0.parameters(), 'lr': lr2*10},
{'params': self.id_a.classifier1.parameters(), 'lr': lr2*10},
{'params': self.id_a.classifier2.parameters(), 'lr': lr2*10},
{'params': self.id_a.classifier3.parameters(), 'lr': lr2*10}
], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True)
elif hyperparameters['ID_style']=='AB':
ignored_params = (list(map(id, self.id_a.classifier1.parameters()))
+ list(map(id, self.id_a.classifier2.parameters())))
base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters())
lr2 = hyperparameters['lr2']
self.id_opt = torch.optim.SGD([
{'params': base_params, 'lr': lr2},
{'params': self.id_a.classifier1.parameters(), 'lr': lr2*10},
{'params': self.id_a.classifier2.parameters(), 'lr': lr2*10}
], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True)
else:
ignored_params = list(map(id, self.id_a.classifier.parameters() ))
base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters())
lr2 = hyperparameters['lr2']
self.id_opt = torch.optim.SGD([
{'params': base_params, 'lr': lr2},
{'params': self.id_a.classifier.parameters(), 'lr': lr2*10}
], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True)
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters)
self.id_scheduler = get_scheduler(self.id_opt, hyperparameters)
self.id_scheduler.gamma = hyperparameters['gamma2']
#ID Loss
self.id_criterion = nn.CrossEntropyLoss()
self.criterion_teacher = nn.KLDivLoss(size_average=False)
# Load VGG model if needed
if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0:
self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models')
self.vgg.eval()
for param in self.vgg.parameters():
param.requires_grad = False
# save memory
if self.fp16:
# Name the FP16_Optimizer instance to replace the existing optimizer
assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."
self.gen_a = self.gen_a.cuda()
self.dis_a = self.dis_a.cuda()
self.id_a = self.id_a.cuda()
self.gen_b = self.gen_a
self.dis_b = self.dis_a
self.id_b = self.id_a
self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1")
self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1")
self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
def to_re(self, x):
out = torch.FloatTensor(x.size(0), x.size(1), x.size(2), x.size(3))
out = out.cuda()
for i in range(x.size(0)):
out[i,:,:,:] = self.single_re(x[i,:,:,:])
return out
def recon_criterion(self, input, target):
diff = input - target.detach()
return torch.mean(torch.abs(diff[:]))
def recon_criterion_sqrt(self, input, target):
diff = input - target
return torch.mean(torch.sqrt(torch.abs(diff[:])+1e-8))
def recon_criterion2(self, input, target):
diff = input - target
return torch.mean(diff[:]**2)
def recon_cos(self, input, target):
cos = torch.nn.CosineSimilarity()
cos_dis = 1 - cos(input, target)
return torch.mean(cos_dis[:])
def forward(self, x_a, x_b):
self.eval()
s_a = self.gen_a.encode(self.single(x_a))
s_b = self.gen_b.encode(self.single(x_b))
f_a, _ = self.id_a(scale2(x_a))
f_b, _ = self.id_b(scale2(x_b))
x_ba = self.gen_a.decode(s_b, f_a)
x_ab = self.gen_b.decode(s_a, f_b)
self.train()
return x_ab, x_ba
def gen_update(self, x_a, l_a, xp_a, x_b, l_b, xp_b, hyperparameters, iteration):
# ppa, ppb is the same person
self.gen_opt.zero_grad()
self.id_opt.zero_grad()
# encode
s_a = self.gen_a.encode(self.single(x_a))
s_b = self.gen_b.encode(self.single(x_b))
f_a, p_a = self.id_a(scale2(x_a))
f_b, p_b = self.id_b(scale2(x_b))
# autodecode
x_a_recon = self.gen_a.decode(s_a, f_a)
x_b_recon = self.gen_b.decode(s_b, f_b)
# encode the same ID different photo
fp_a, pp_a = self.id_a(scale2(xp_a))
fp_b, pp_b = self.id_b(scale2(xp_b))
# decode the same person
x_a_recon_p = self.gen_a.decode(s_a, fp_a)
x_b_recon_p = self.gen_b.decode(s_b, fp_b)
# has gradient
x_ba = self.gen_a.decode(s_b, f_a)
x_ab = self.gen_b.decode(s_a, f_b)
# no gradient
x_ba_copy = Variable(x_ba.data, requires_grad=False)
x_ab_copy = Variable(x_ab.data, requires_grad=False)
rand_num = random.uniform(0,1)
#################################
# encode structure
if hyperparameters['use_encoder_again']>=rand_num:
# encode again (encoder is tuned, input is fixed)
s_a_recon = self.gen_b.enc_content(self.single(x_ab_copy))
s_b_recon = self.gen_a.enc_content(self.single(x_ba_copy))
else:
# copy the encoder
self.enc_content_copy = copy.deepcopy(self.gen_a.enc_content)
self.enc_content_copy = self.enc_content_copy.eval()
# encode again (encoder is fixed, input is tuned)
s_a_recon = self.enc_content_copy(self.single(x_ab))
s_b_recon = self.enc_content_copy(self.single(x_ba))
#################################
# encode appearance
self.id_a_copy = copy.deepcopy(self.id_a)
self.id_a_copy = self.id_a_copy.eval()
if hyperparameters['train_bn']:
self.id_a_copy = self.id_a_copy.apply(train_bn)
self.id_b_copy = self.id_a_copy
# encode again (encoder is fixed, input is tuned)
f_a_recon, p_a_recon = self.id_a_copy(scale2(x_ba))
f_b_recon, p_b_recon = self.id_b_copy(scale2(x_ab))
# teacher Loss
# Tune the ID model
log_sm = nn.LogSoftmax(dim=1)
if hyperparameters['teacher_w'] >0 and hyperparameters['teacher'] != "":
if hyperparameters['ID_style'] == 'normal':
_, p_a_student = self.id_a(scale2(x_ba_copy))
p_a_student = log_sm(p_a_student)
p_a_teacher = predict_label(self.teacher_model, scale2(x_ba_copy))
self.loss_teacher = self.criterion_teacher(p_a_student, p_a_teacher) / p_a_student.size(0)
_, p_b_student = self.id_b(scale2(x_ab_copy))
p_b_student = log_sm(p_b_student)
p_b_teacher = predict_label(self.teacher_model, scale2(x_ab_copy))
self.loss_teacher += self.criterion_teacher(p_b_student, p_b_teacher) / p_b_student.size(0)
elif hyperparameters['ID_style'] == 'AB':
# normal teacher-student loss
# BA -> LabelA(smooth) + LabelB(batchB)
_, p_ba_student = self.id_a(scale2(x_ba_copy))# f_a, s_b
p_a_student = log_sm(p_ba_student[0])
with torch.no_grad():
p_a_teacher = predict_label(self.teacher_model, scale2(x_ba_copy), num_class = hyperparameters['ID_class'], alabel = l_a, slabel = l_b, teacher_style = hyperparameters['teacher_style'])
self.loss_teacher = self.criterion_teacher(p_a_student, p_a_teacher) / p_a_student.size(0)
_, p_ab_student = self.id_b(scale2(x_ab_copy)) # f_b, s_a
p_b_student = log_sm(p_ab_student[0])
with torch.no_grad():
p_b_teacher = predict_label(self.teacher_model, scale2(x_ab_copy), num_class = hyperparameters['ID_class'], alabel = l_b, slabel = l_a, teacher_style = hyperparameters['teacher_style'])
self.loss_teacher += self.criterion_teacher(p_b_student, p_b_teacher) / p_b_student.size(0)
# branch b loss
# here we give different label
loss_B = self.id_criterion(p_ba_student[1], l_b) + self.id_criterion(p_ab_student[1], l_a)
self.loss_teacher = hyperparameters['T_w'] * self.loss_teacher + hyperparameters['B_w'] * loss_B
else:
self.loss_teacher = 0.0
# decode again (if needed)
if hyperparameters['use_decoder_again']:
x_aba = self.gen_a.decode(s_a_recon, f_a_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
x_bab = self.gen_b.decode(s_b_recon, f_b_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
else:
self.mlp_w_copy = copy.deepcopy(self.gen_a.mlp_w)
self.mlp_b_copy = copy.deepcopy(self.gen_a.mlp_b)
self.dec_copy = copy.deepcopy(self.gen_a.dec) # Error
ID = f_a_recon
ID_Style = ID.view(ID.shape[0], ID.shape[1], 1, 1)
adain_params_w = self.mlp_w_copy(ID_Style)
adain_params_b = self.mlp_b_copy(ID_Style)
self.gen_a.assign_adain_params(adain_params_w, adain_params_b, self.dec_copy)
x_aba = self.dec_copy(s_a_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
ID = f_b_recon
ID_Style = ID.view(ID.shape[0], ID.shape[1], 1, 1)
adain_params_w = self.mlp_w_copy(ID_Style)
adain_params_b = self.mlp_b_copy(ID_Style)
self.gen_a.assign_adain_params(adain_params_w, adain_params_b, self.dec_copy)
x_bab = self.dec_copy(s_b_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
# auto-encoder image reconstruction
self.loss_gen_recon_x_a = self.recon_criterion(x_a_recon, x_a)
self.loss_gen_recon_x_b = self.recon_criterion(x_b_recon, x_b)
self.loss_gen_recon_xp_a = self.recon_criterion(x_a_recon_p, x_a)
self.loss_gen_recon_xp_b = self.recon_criterion(x_b_recon_p, x_b)
# feature reconstruction
self.loss_gen_recon_s_a = self.recon_criterion(s_a_recon, s_a) if hyperparameters['recon_s_w'] > 0 else 0
self.loss_gen_recon_s_b = self.recon_criterion(s_b_recon, s_b) if hyperparameters['recon_s_w'] > 0 else 0
self.loss_gen_recon_f_a = self.recon_criterion(f_a_recon, f_a) if hyperparameters['recon_f_w'] > 0 else 0
self.loss_gen_recon_f_b = self.recon_criterion(f_b_recon, f_b) if hyperparameters['recon_f_w'] > 0 else 0
# Random Erasing only effect the ID and PID loss.
if hyperparameters['erasing_p'] > 0:
x_a_re = self.to_re(scale2(x_a.clone()))
x_b_re = self.to_re(scale2(x_b.clone()))
xp_a_re = self.to_re(scale2(xp_a.clone()))
xp_b_re = self.to_re(scale2(xp_b.clone()))
_, p_a = self.id_a(x_a_re)
_, p_b = self.id_b(x_b_re)
# encode the same ID different photo
_, pp_a = self.id_a(xp_a_re)
_, pp_b = self.id_b(xp_b_re)
# ID loss AND Tune the Generated image
if hyperparameters['ID_style']=='PCB':
self.loss_id = self.PCB_loss(p_a, l_a) + self.PCB_loss(p_b, l_b)
self.loss_pid = self.PCB_loss(pp_a, l_a) + self.PCB_loss(pp_b, l_b)
self.loss_gen_recon_id = self.PCB_loss(p_a_recon, l_a) + self.PCB_loss(p_b_recon, l_b)
elif hyperparameters['ID_style']=='AB':
weight_B = hyperparameters['teacher_w'] * hyperparameters['B_w']
self.loss_id = self.id_criterion(p_a[0], l_a) + self.id_criterion(p_b[0], l_b) \
+ weight_B * ( self.id_criterion(p_a[1], l_a) + self.id_criterion(p_b[1], l_b) )
self.loss_pid = self.id_criterion(pp_a[0], l_a) + self.id_criterion(pp_b[0], l_b) #+ weight_B * ( self.id_criterion(pp_a[1], l_a) + self.id_criterion(pp_b[1], l_b) )
self.loss_gen_recon_id = self.id_criterion(p_a_recon[0], l_a) + self.id_criterion(p_b_recon[0], l_b)
else:
self.loss_id = self.id_criterion(p_a, l_a) + self.id_criterion(p_b, l_b)
self.loss_pid = self.id_criterion(pp_a, l_a) + self.id_criterion(pp_b, l_b)
self.loss_gen_recon_id = self.id_criterion(p_a_recon, l_a) + self.id_criterion(p_b_recon, l_b)
#print(f_a_recon, f_a)
self.loss_gen_cycrecon_x_a = self.recon_criterion(x_aba, x_a) if hyperparameters['recon_x_cyc_w'] > 0 else 0
self.loss_gen_cycrecon_x_b = self.recon_criterion(x_bab, x_b) if hyperparameters['recon_x_cyc_w'] > 0 else 0
# GAN loss
self.loss_gen_adv_a = self.dis_a.calc_gen_loss(x_ba)
self.loss_gen_adv_b = self.dis_b.calc_gen_loss(x_ab)
# domain-invariant perceptual loss
self.loss_gen_vgg_a = self.compute_vgg_loss(self.vgg, x_ba, x_b) if hyperparameters['vgg_w'] > 0 else 0
self.loss_gen_vgg_b = self.compute_vgg_loss(self.vgg, x_ab, x_a) if hyperparameters['vgg_w'] > 0 else 0
if iteration > hyperparameters['warm_iter']:
hyperparameters['recon_f_w'] += hyperparameters['warm_scale']
hyperparameters['recon_f_w'] = min(hyperparameters['recon_f_w'], hyperparameters['max_w'])
hyperparameters['recon_s_w'] += hyperparameters['warm_scale']
hyperparameters['recon_s_w'] = min(hyperparameters['recon_s_w'], hyperparameters['max_w'])
hyperparameters['recon_x_cyc_w'] += hyperparameters['warm_scale']
hyperparameters['recon_x_cyc_w'] = min(hyperparameters['recon_x_cyc_w'], hyperparameters['max_cyc_w'])
if iteration > hyperparameters['warm_teacher_iter']:
hyperparameters['teacher_w'] += hyperparameters['warm_scale']
hyperparameters['teacher_w'] = min(hyperparameters['teacher_w'], hyperparameters['max_teacher_w'])
# total loss
self.loss_gen_total = hyperparameters['gan_w'] * self.loss_gen_adv_a + \
hyperparameters['gan_w'] * self.loss_gen_adv_b + \
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_a + \
hyperparameters['recon_xp_w'] * self.loss_gen_recon_xp_a + \
hyperparameters['recon_f_w'] * self.loss_gen_recon_f_a + \
hyperparameters['recon_s_w'] * self.loss_gen_recon_s_a + \
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_b + \
hyperparameters['recon_xp_w'] * self.loss_gen_recon_xp_b + \
hyperparameters['recon_f_w'] * self.loss_gen_recon_f_b + \
hyperparameters['recon_s_w'] * self.loss_gen_recon_s_b + \
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cycrecon_x_a + \
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cycrecon_x_b + \
hyperparameters['id_w'] * self.loss_id + \
hyperparameters['pid_w'] * self.loss_pid + \
hyperparameters['recon_id_w'] * self.loss_gen_recon_id + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_a + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_b + \
hyperparameters['teacher_w'] * self.loss_teacher
if self.fp16:
with amp.scale_loss(self.loss_gen_total, [self.gen_opt,self.id_opt]) as scaled_loss:
scaled_loss.backward()
self.gen_opt.step()
self.id_opt.step()
else:
self.loss_gen_total.backward()
self.gen_opt.step()
self.id_opt.step()
print("L_total: %.4f, L_gan: %.4f, Lx: %.4f, Lxp: %.4f, Lrecycle:%.4f, Lf: %.4f, Ls: %.4f, Recon-id: %.4f, id: %.4f, pid:%.4f, teacher: %.4f"%( self.loss_gen_total, \
hyperparameters['gan_w'] * (self.loss_gen_adv_a + self.loss_gen_adv_b), \
hyperparameters['recon_x_w'] * (self.loss_gen_recon_x_a + self.loss_gen_recon_x_b), \
hyperparameters['recon_xp_w'] * (self.loss_gen_recon_xp_a + self.loss_gen_recon_xp_b), \
hyperparameters['recon_x_cyc_w'] * (self.loss_gen_cycrecon_x_a + self.loss_gen_cycrecon_x_b), \
hyperparameters['recon_f_w'] * (self.loss_gen_recon_f_a + self.loss_gen_recon_f_b), \
hyperparameters['recon_s_w'] * (self.loss_gen_recon_s_a + self.loss_gen_recon_s_b), \
hyperparameters['recon_id_w'] * self.loss_gen_recon_id, \
hyperparameters['id_w'] * self.loss_id,\
hyperparameters['pid_w'] * self.loss_pid,\
hyperparameters['teacher_w'] * self.loss_teacher ) )
def compute_vgg_loss(self, vgg, img, target):
img_vgg = vgg_preprocess(img)
target_vgg = vgg_preprocess(target)
img_fea = vgg(img_vgg)
target_fea = vgg(target_vgg)
return torch.mean((self.instancenorm(img_fea) - self.instancenorm(target_fea)) ** 2)
def PCB_loss(self, inputs, labels):
loss = 0.0
for part in inputs:
loss += self.id_criterion(part, labels)
return loss/len(inputs)
def sample(self, x_a, x_b):
self.eval()
x_a_recon, x_b_recon, x_ba1, x_ab1, x_aba, x_bab = [], [], [], [], [], []
for i in range(x_a.size(0)):
s_a = self.gen_a.encode( self.single(x_a[i].unsqueeze(0)) )
s_b = self.gen_b.encode( self.single(x_b[i].unsqueeze(0)) )
f_a, _ = self.id_a( scale2(x_a[i].unsqueeze(0)))
f_b, _ = self.id_b( scale2(x_b[i].unsqueeze(0)))
x_a_recon.append(self.gen_a.decode(s_a, f_a))
x_b_recon.append(self.gen_b.decode(s_b, f_b))
x_ba = self.gen_a.decode(s_b, f_a)
x_ab = self.gen_b.decode(s_a, f_b)
x_ba1.append(x_ba)
x_ab1.append(x_ab)
#cycle
s_b_recon = self.gen_a.enc_content(self.single(x_ba))
s_a_recon = self.gen_b.enc_content(self.single(x_ab))
f_a_recon, _ = self.id_a(scale2(x_ba))
f_b_recon, _ = self.id_b(scale2(x_ab))
x_aba.append(self.gen_a.decode(s_a_recon, f_a_recon))
x_bab.append(self.gen_b.decode(s_b_recon, f_b_recon))
x_a_recon, x_b_recon = torch.cat(x_a_recon), torch.cat(x_b_recon)
x_aba, x_bab = torch.cat(x_aba), torch.cat(x_bab)
x_ba1, x_ab1 = torch.cat(x_ba1), torch.cat(x_ab1)
self.train()
return x_a, x_a_recon, x_aba, x_ab1, x_b, x_b_recon, x_bab, x_ba1
def dis_update(self, x_a, x_b, hyperparameters):
self.dis_opt.zero_grad()
# encode
s_a = self.gen_a.encode(self.single(x_a))
s_b = self.gen_b.encode(self.single(x_b))
f_a, _ = self.id_a(scale2(x_a))
f_b, _ = self.id_b(scale2(x_b))
# decode (cross domain)
x_ba = self.gen_a.decode(s_b, f_a)
x_ab = self.gen_b.decode(s_a, f_b)
# D loss
self.loss_dis_a, reg_a = self.dis_a.calc_dis_loss(x_ba.detach(), x_a)
self.loss_dis_b, reg_b = self.dis_b.calc_dis_loss(x_ab.detach(), x_b)
self.loss_dis_total = hyperparameters['gan_w'] * self.loss_dis_a + hyperparameters['gan_w'] * self.loss_dis_b
print("DLoss: %.4f"%self.loss_dis_total, "Reg: %.4f"%(reg_a+reg_b) )
if self.fp16:
with amp.scale_loss(self.loss_dis_total, self.dis_opt) as scaled_loss:
scaled_loss.backward()
else:
self.loss_dis_total.backward()
self.dis_opt.step()
def update_learning_rate(self):
if self.dis_scheduler is not None:
self.dis_scheduler.step()
if self.gen_scheduler is not None:
self.gen_scheduler.step()
if self.id_scheduler is not None:
self.id_scheduler.step()
def resume(self, checkpoint_dir, hyperparameters):
# Load generators
last_model_name = get_model_list(checkpoint_dir, "gen")
state_dict = torch.load(last_model_name)
self.gen_a.load_state_dict(state_dict['a'])
self.gen_b = self.gen_a
iterations = int(last_model_name[-11:-3])
# Load discriminators
last_model_name = get_model_list(checkpoint_dir, "dis")
state_dict = torch.load(last_model_name)
self.dis_a.load_state_dict(state_dict['a'])
self.dis_b = self.dis_a
# Load ID dis
last_model_name = get_model_list(checkpoint_dir, "id")
state_dict = torch.load(last_model_name)
self.id_a.load_state_dict(state_dict['a'])
self.id_b = self.id_a
# Load optimizers
try:
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt'))
self.dis_opt.load_state_dict(state_dict['dis'])
self.gen_opt.load_state_dict(state_dict['gen'])
self.id_opt.load_state_dict(state_dict['id'])
except:
pass
# Reinitilize schedulers
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters, iterations)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters, iterations)
print('Resume from iteration %d' % iterations)
return iterations
def save(self, snapshot_dir, iterations):
# Save generators, discriminators, and optimizers
gen_name = os.path.join(snapshot_dir, 'gen_%08d.pt' % (iterations + 1))
dis_name = os.path.join(snapshot_dir, 'dis_%08d.pt' % (iterations + 1))
id_name = os.path.join(snapshot_dir, 'id_%08d.pt' % (iterations + 1))
opt_name = os.path.join(snapshot_dir, 'optimizer.pt')
torch.save({'a': self.gen_a.state_dict()}, gen_name)
torch.save({'a': self.dis_a.state_dict()}, dis_name)
torch.save({'a': self.id_a.state_dict()}, id_name)
torch.save({'gen': self.gen_opt.state_dict(), 'id': self.id_opt.state_dict(), 'dis': self.dis_opt.state_dict()}, opt_name)