forked from ibal3233/DRL-MEC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Agent.py
271 lines (238 loc) · 10.4 KB
/
Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import random
from collections import namedtuple
# this file implements the agent (MEC server)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class input_layer(nn.Module):
'''
this is a self defined laer, used to transfer the user request state, as shown in the paper.
'''
def __init__(self, user_num, task_num):
super(input_layer, self).__init__()
self.user_num = user_num
self.task_num =task_num
self.w = nn.Parameter(torch.randn(task_num, user_num))
self.b = nn.Parameter(torch.randn(task_num))
def forward(self, x):
batch_sz = x.shape[0]
First_opt = np.zeros([batch_sz, self.task_num])
for batch_id in range(batch_sz):
sample = x[batch_id]
for user_ind in range(self.user_num):
index = int(sample[user_ind] - 1)
if index >=0:
First_opt[batch_id, index] += self.w[index, user_ind]
for file_ind in range(self.task_num):
First_opt[batch_id, file_ind] += self.b[file_ind]
tensor_opt = torch.from_numpy(First_opt).type(torch.FloatTensor).to(device)
return tensor_opt
class FullNet(nn.Module):
'''
this class define the DNN used in the DDQN of our paper
'''
def __init__(self, state_num, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, task_num):
super(FullNet, self).__init__()
self.fc1 = input_layer(state_num, task_num)
self.fc2 = nn.Linear(task_num, n_mid1)
self.fc3 = nn.Linear(n_mid1, n_mid2)
self.fc4 = nn.Linear(n_mid2, n_mid3)
self.fc5 = nn.Linear(n_mid3, n_mid4)
self.fc6 = nn.Linear(n_mid4, n_mid5)
self.fc7 = nn.Linear(n_mid5, task_num)
def forward(self, x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1))
h3 = F.relu(self.fc3(h2))
h4 = F.relu(self.fc4(h3))
h5 = F.relu(self.fc5(h4))
h6 = F.relu(self.fc6(h5))
output = self.fc7(h6)
return output
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory:
'''
memory, store historical data for experience replay
'''
def __init__(self, CAPACITY):
self.capacity = CAPACITY
self.memory = []
self.index = 0
def push(self, state, action, state_next, reward):
'''save the transition = (state, action, state_next, reward)'''
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.index] = Transition(state, action, state_next, reward)
self.index = (self.index + 1)%self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
BATCH_SIZE = 32
CAPACITY = 10000
class BSAgentBrain:
'''
this class implements the agent brain
'''
def __init__(self, state_num, action_num, MEC_C, File_num, D_f, learning_rate=0.0001, GAMMA=0.9):
self.state_num = state_num
self.action_num = action_num
self.memory = ReplayMemory(CAPACITY)
self.MEC_C = MEC_C
self.File_num = File_num
self.Df = D_f
self.GAMMA = GAMMA
n_in, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, n_out = state_num, 512, 512, 256, 256, 128, action_num
self.main_q_network = FullNet(n_in, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, n_out).to(device)
self.target_q_network = FullNet(n_in, n_mid1, n_mid2, n_mid3, n_mid4, n_mid5, n_out).to(device)
self.optimizer = optim.Adam(self.main_q_network.parameters(), lr=learning_rate)
def action_selection(self, last_layer_out):
'''
this funtion implements the optimal caching action based on the output of the first layer of TLA (TLA is shown in paper)
'''
capacity = int(self.MEC_C / (10 ** 8))
Df = self.Df / (10 ** 8)
last_out = torch.squeeze(last_layer_out)
file_num = self.File_num
caching_vector = np.zeros(file_num)
W_r = np.zeros((file_num, capacity+1))
W_value = np.zeros((file_num, capacity+1))
for f in range(file_num):
if f < file_num-1:
for q in range(capacity+1):
if f == 0:
if q < Df[f]:
W_r[f, q] = 0
W_value[f, q] = 0
else:
W_r[f, q] = 1
W_value[f, q] = last_out[f]
else:
if q < Df[f]:
W_r[f, q] = 0
W_value[f, q] = W_value[f-1, q]
else:
dim2_ind = int(q-Df[f])
caching_v = last_out[f] + W_value[f-1, dim2_ind]
if caching_v > W_value[f-1, q]:
W_r[f, q] = 1
W_value[f, q] = caching_v
else:
W_r[f, q] = 0
W_value[f, q] = W_value[f-1, q]
else:
dim2_ind = int(capacity-Df[f])
caching_v = last_out[f] + W_value[f-1, dim2_ind]
if caching_v > W_value[f-1, capacity]:
W_r[f, capacity] = 1
W_value[f, capacity] = caching_v
else:
W_r[f, capacity] = 0
W_value[f, capacity] = W_value[f-1, capacity]
caching_vector[file_num-1] = W_r[file_num-1, capacity]
temp_L = caching_vector[file_num-1] * Df[file_num-1]
temp_L = int(temp_L)
posi_index = range(file_num-1)
inver_index = sorted(posi_index, reverse=True)
for index in inver_index:
dim2_ind = int(capacity-temp_L)
caching_vector[index] = W_r[index, dim2_ind]
temp_L += caching_vector[index] * Df[index]
temp_L = int(temp_L)
caching_vector = torch.from_numpy(caching_vector).type(torch.FloatTensor)
caching_vector = torch.unsqueeze(caching_vector, 0)
caching_action = caching_vector
return caching_action
def decide_action(self, state, training=True):
'''
this function implements the action selection, use \epsilon-greedy policy
'''
if np.random.uniform(0, 1) < 0.5 and training == True:
action = np.zeros(self.File_num)
shuffle_index = [i for i in range(self.File_num)]
np.random.shuffle(shuffle_index)
residual_C = self.MEC_C
for ind in range(self.File_num):
file_ind = shuffle_index[ind]
if residual_C > 0 and self.Df[file_ind] < residual_C:
action[file_ind] = 1
residual_C = residual_C - self.Df[file_ind]
action = torch.from_numpy(action).type(torch.FloatTensor)
action = torch.unsqueeze(action, 0)
else:
self.main_q_network.eval()
with torch.no_grad():
state = state.to(device)
output = self.main_q_network(state)
action = self.action_selection(last_layer_out=output)
return action
def replay(self):
'''
experience replay for training
'''
if len(self.memory) < BATCH_SIZE:
return
self.batch, self.state_batch, self.action_batch, self.reward_batch, self.next_state_batch = self.make_minibatch()
self.expected_state_action_values = self.get_expected_state_action_values()
self.update_main_q_network()
def make_minibatch(self):
'''
sampling a batch of data from experience memory
'''
transitions = self.memory.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
state_batch = torch.cat(batch.state).to(device)
action_batch = torch.cat(batch.action).to(device)
reward_batch = torch.cat(batch.reward).to(device)
next_state_batch = torch.cat(batch.next_state).to(device)
return batch, state_batch, action_batch, reward_batch, next_state_batch
def get_expected_state_action_values(self):
'''
solve the expected state-action value
'''
self.main_q_network.eval()
self.target_q_network.eval()
batch_out = self.main_q_network(self.state_batch)
s_a_values = torch.zeros(BATCH_SIZE).to(device)
for batch_ind in range(BATCH_SIZE):
s_a_values[batch_ind] = torch.matmul(batch_out[batch_ind], self.action_batch[batch_ind])
self.state_action_values = s_a_values
next_batch_out = self.target_q_network(self.next_state_batch)
next_s_a_values = torch.zeros(BATCH_SIZE).to(device)
for batch_ind in range(BATCH_SIZE):
temp = self.action_selection(next_batch_out[batch_ind]).to(device)
next_s_a_values[batch_ind] = torch.matmul(next_batch_out[batch_ind], temp.t())
expected_state_action_values = self.reward_batch + self.GAMMA * next_s_a_values
return expected_state_action_values
def update_main_q_network(self):
'''
backpropagate for agent training
'''
self.main_q_network.train()
loss = F.smooth_l1_loss(self.state_action_values, self.expected_state_action_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_q_network(self):
'''
weight copy to target network
'''
self.target_q_network.load_state_dict(self.main_q_network.state_dict())
class BSAgent:
'''
this class implements agent, based on BSAgentBrain
'''
def __init__(self, state_num, action_num, MEC_C, File_num, D_f, learning_rate=0.0001, GAMMA=0.9):
self.brain = BSAgentBrain(state_num=state_num, action_num=action_num, MEC_C=MEC_C, File_num=File_num, D_f=D_f, learning_rate=learning_rate, GAMMA=GAMMA)
def update_q_function(self):
self.brain.replay()
def get_action(self, state, training=True):
action = self.brain.decide_action(state, training=training)
return action
def memorize(self, state, action, state_next, reward):
self.brain.memory.push(state, action, state_next, reward)
def update_target_q_function(self):
self.brain.update_target_q_network()