forked from Tong-Chen/s-plot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsp_normTest.sh
executable file
·247 lines (215 loc) · 5.73 KB
/
sp_normTest.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/bin/bash
#Only for debugging
#set -x
usage()
{
cat <<EOF
${txtcyn}
***CREATED BY Chen Tong (chentong_biology@163.com)***
Usage:
$0 options${txtrst}
${bldblu}Function${txtrst}:
This program is designed to test if two boxes have statistically
significant differences.
Currently multiple groups among one set are supported.
fileformat for -f (suitable for data extracted from one sample, the
number of columns is unlimited. Column 'Set' is not necessary unless
you have multiple groups)
Gene hmC expr Set
NM_001003918_26622 0 83.1269257376101 TP16
NM_001011535_3260 0 0 TP16
NM_001012640_14264 0 0 TP16
NM_001012640_30427 0 0 TP16
NM_001003918_2662217393_30486 0 0 TP16
NM_001017393_30504 0 0 TP16
NM_001025241_30464 0 0 TP16
NM_001017393_30504001025241_30513 0 0 TP16
For file using "Set" column, you can use
$0 -f file -a Set
fileformat when -m is true
#The name "value" and "variable" shoud not be altered.
#The "Set" column is optional.
#If you do have several groups, they can put at the "Set" column
#with "Set" or other string as labels. The label should be given
#to parameter -a.
#Actually this format is the melted result of last format.
value variable Set
0 hmC g
1 expr g
2 hmC a
3 expr a
${txtbld}OPTIONS${txtrst}:
-f Data file (with header line, the first column is the
colname, tab seperated)${bldred}[NECESSARY]${txtrst}
-m When true, it will skip preprocess. But the format must be
the same as listed before.
${bldred}[Default FALSE, accept TRUE]${txtrst}
-a Name for x-axis variable
[${txtred}Default variable, which is an inner name, suitable
for data without 'Set' column. For the given example,
'Set' which represents groups of each gene, and should be
supplied to this parameter.
${txtrst}]
-s The statistical method you want to use.${bldred}[Default
shapiro.test, accept lillieTest, ***]${txtrst}
-D Self-define intervals for legend variable when legend is
continuous numbers. Accept either a
numeric vector of two or more cut points or a single number
(greater than or equal to 2) giving the number of intervals
into what 'x' is to be cut. This has higher priority than -l.
[10 will generate 10 intervals or
"c(-1, 0, 1, 2, 5, 10)" will generate (-1,0],(0,1]...(5,10]]
-B Self-define intervals for x-axis variable. Accept either a
numeric vector of two or more cut points or a single number
(greater than or equal to 2) giving the number of intervals
into what 'x' is to be cut.
[10 will generate 10 intervals or
"c(-1, 0, 1, 2, 5, 10)" will generate (-1,0],(0,1]...(5,10]]
-e Execute or not[${bldred}Default TRUE${txtrst}]
-i Install depeneded packages[${bldred}Default FALSE${txtrst}]
EOF
}
file=
melted='FALSE'
xvariable='variable'
level=""
legend_cut=""
x_level=""
x_cut=""
header='TRUE'
execute='TRUE'
ist='FALSE'
method='shapiro.test'
while getopts "ha:B:D:e:f:i:m:s:" OPTION
do
case $OPTION in
h)
usage
exit 1
;;
f)
file=$OPTARG
;;
m)
melted=$OPTARG
;;
a)
xvariable=$OPTARG
;;
s)
method=$OPTARG
;;
B)
x_cut=$OPTARG
;;
D)
legend_cut=$OPTARG
;;
e)
execute=$OPTARG
;;
i)
ist=$OPTARG
;;
?)
usage
exit 1
;;
esac
done
if [ -z $file ]; then
usage
exit 1
fi
mid=".boxplot.${method}"
cat <<END >${file}${mid}.r
if ($ist){
install.packages("fBasics", repo="http://cran.us.r-project.org")
}
if ("${method}" == "lillieTest"){
library('fBasics')
}
if(! $melted){
data <- read.table(file="${file}", sep="\t", header=$header,
row.names=1, quote="")
if ("$xvariable" != "variable"){
data_m <- melt(data, id.vars=c("${xvariable}"))
} else {
data_m <- melt(data)
}
} else {
data_m <- read.table(file="$file", sep="\t",
header=$header)
}
if ("${legend_cut}" != ""){
data_m\$variable <- cut(data_m\$variable, ${legend_cut})
}
if ("${x_cut}" != ""){
data_m\$${xvariable} <- cut(data_m\$${xvariable},${x_cut})
}
if ("$xvariable" == "variable"){
#No Group information
variableL <- unique(data_m\$variable)
len_var <- length(variableL)
for(i in 1:len_var){
var1 <- variableL[i]
new_data <- data_m[data_m\$variable == var1,]\$value
if ("${method}" == "lillieTest"){
if (length(new_data) > 4) {
print(paste("### Compute normality for", var1, "###"))
print(${method}(new_data))
} else {
print(paste("### No enough data for lillieTest:", var1, "###"))
}
} else if ("${method}" == "shapiro.test") {
if (length(new_data) > 2) {
print(paste("### Compute normality for", var1, "###"))
print(${method}(new_data))
} else {
print(paste("### No enough data for shapiro.test:",
var1, "###"))
}
} else {
print(paste("### Compute normality for", var1, "###"))
print(${method}(new_data))
}
}
} else {
#Compute several groups
group <- names(summary(data_m\$${xvariable}))
for (i in group){
tmp <- data_m[data_m\$${xvariable}==i,]
print(paste("*** Compute for Group ", i, " ***"))
variableL <- unique(tmp\$variable)
len_var <- length(variableL)
for(i in 1:len_var){
var1 <- variableL[i]
new_data <- tmp[tmp\$variable == var1,]\$value
if ("${method}" == "lillieTest"){
if (length(new_data) > 4) {
print(paste("### Compute normality for", var1, "###"))
print(${method}(new_data))
} else {
print(paste("### No enough data for lillieTest:",
var1, "###"))
}
} else if ("${method}" == "shapiro.test") {
if (length(new_data) > 2) {
print(paste("### Compute normality for", var1, "###"))
print(${method}(new_data))
} else {
print(paste("### No enough data for shapiro.test:",
var1, "###"))
}
}else {
print(paste("### Compute normality for", var1, "###"))
print(${method}(new_data))
}
}
}
}
END
if [ "$execute" == "TRUE" ]; then
Rscript ${file}${mid}.r
if [ "$?" == "0" ]; then /bin/rm -f ${file}${mid}.r; fi
fi