forked from Tong-Chen/s-plot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sp_pheatmap.sh
executable file
·532 lines (472 loc) · 12.9 KB
/
sp_pheatmap.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#!/bin/bash
#set -x
usage()
{
cat <<EOF
${txtcyn}
***CREATED BY Chen Tong (chentong_biology@163.com)***
----Matrix file--------------
Name T0_1 T0_2 T0_3 T4_1 T4_2
TR19267|c0_g1|CYP703A2 1.431 0.77 1.309 1.247 0.485
TR19612|c1_g3|CYP707A1 0.72 0.161 0.301 2.457 2.794
TR60337|c4_g9|CYP707A1 0.056 0.09 0.038 7.643 15.379
TR19612|c0_g1|CYP707A3 2.011 0.689 1.29 0 0
TR35761|c0_g1|CYP707A4 1.946 1.575 1.892 1.019 0.999
TR58054|c0_g2|CYP707A4 12.338 10.016 9.387 0.782 0.563
TR14082|c7_g4|CYP707A4 10.505 8.709 7.212 4.395 6.103
TR60509|c0_g1|CYP707A7 3.527 3.348 2.128 3.257 2.338
TR26914|c0_g1|CYP710A1 1.899 1.54 0.998 0.255 0.427
----Matrix file--------------
----Row annorarion file --------------
------1. At least two columns--------------
------2. The first column should be the same as the first column in
matrix (order does not matter)--------------
Name Clan Family
TR19267|c0_g1|CYP703A2 CYP71 CYP703
TR19612|c1_g3|CYP707A1 CYP85 CYP707
TR60337|c4_g9|CYP707A1 CYP85 CYP707
TR19612|c0_g1|CYP707A3 CYP85 CYP707
TR35761|c0_g1|CYP707A4 CYP85 CYP707
TR58054|c0_g2|CYP707A4 CYP85 CYP707
TR14082|c7_g4|CYP707A4 CYP85 CYP707
TR60509|c0_g1|CYP707A7 CYP85 CYP707
TR26914|c0_g1|CYP710A1 CYP710 CYP710
----Row annorarion file --------------
----Column annorarion file --------------
------1. At least two columns--------------
------2. The first column should be the same as the first row in
---------matrix (order does not matter)--------------
Name Sample
T0_1 T0
T0_2 T0
T0_3 T0
T4_1 T4
T4_2 T4
----Column annorarion file --------------
Usage:
$0 options${txtrst}
${bldblu}Function${txtrst}:
This script is used to do heatmap using package pheatmap.
The parameters for logical variable are either TRUE or FALSE.
${txtbld}OPTIONS${txtrst}:
-f Data file (with header line, the first column is the
rowname, tab seperated. Colnames must be unique unless you
know what you are doing.)${bldred}[NECESSARY]${txtrst}
-t Title of picture[${txtred}Default empty title${txtrst}]
["Heatmap of gene expression profile"]
-a Display xtics. ${bldred}[Default TRUE]${txtrst}
-A Rotation angle for x-axis value (anti clockwise)
${bldred}[Default 90]${txtrst}
-b Display ytics. ${bldred}[Default TRUE]${txtrst}
-H Hieratical cluster for columns.
${bldred}Default FALSE, accept TRUE${txtrst}
-R Hieratical cluster for rows.
${bldred}Default TRUE, accept FALSE${txtrst}
-c Clustering method, Default "complete".
Accept "ward.D", "ward.D2","single", "average" (=UPGMA),
"mcquitty" (=WPGMA), "median" (=WPGMC) or "centroid" (=UPGMC)
-C Color vector.
${bldred}Default pheatmap_default.
Aceept a vector containing multiple colors such as
<'c("white", "blue")'> will be transferred
to <colorRampPalette(c("white", "blue"), bias=${bias})(30)>
or an R function
<colorRampPalette(rev(brewer.pal(n=7, name="RdYlBu")))(100)>
generating a list of colors.
${txtrst}
-T Color type, a vetcor which will be transferred as described in <-C> [vector] or
a raw vector [direct vector] or a function [function (default)].
-B A positive number. Default 1. Values larger than 1 will give more color
for high end. Values between 0-1 will give more color for low end.
-D Clustering distance method for rows.
${bldred}Default 'correlation', accept 'euclidean',
"manhattan", "maximum", "canberra", "binary", "minkowski". ${txtrst}
-I Clustering distance method for cols.
${bldred}Default 'correlation', accept 'euclidean',
"manhattan", "maximum", "canberra", "binary", "minkowski". ${txtrst}
-L First get log-value, then do other analysis.
Accept an R function log2 or log10.
${bldred}[Default FALSE]${txtrst}
-d Scale the data or not for clustering and visualization.
[Default 'none' means no scale, accept 'row', 'column' to
scale by row or column.]
-m The maximum value you want to keep, any number larger willl
be taken as this given maximum value.
[${bldred}Default Inf, Optional${txtrst}]
-s The smallest value you want to keep, any number smaller will
be taken as this given minimum value.
[${bldred}Default -Inf, Optional${txtrst}]
-k Aggregate the rows using kmeans clustering.
This is advisable if number of rows is so big that R cannot
handle their hierarchical clustering anymore, roughly more than 1000.
Instead of showing all the rows separately one can cluster the
rows in advance and show only the cluster centers. The number
of clusters can be tuned here.
[${txtred}Default 'NA' which means no
cluster, other positive interger is accepted for executing
kmeans cluster, also the parameter represents the number of
expected clusters.${txtrst}]
-P A file to specify row-annotation with format described above.
[${txtred}Default NA${txtrst}]
-Q A file to specify col-annotation with format described above.
[${txtred}Default NA${txtrst}]
-Z Annotation color. One can only specify color for each column of row-annotation
or col-annotation. For example, 'class' (two values: C1, C2) and
'group' (two values:G1, G2) are two row-annotations,
'type' (three values, T1, T2, T3) and 'size' (four values, 1, 2, 3, 4)
are two col-annoations.
Colors can be specified as <'class=c(C1="blue", C2="yellow"), size=c("white", "green"), type=c(T1="pink", T2="black", T3="cyan")'>.
In R, one can use <colors()> function to get names of all available colors.
-u The width of output picture.[${txtred}Default 20${txtrst}]
-v The height of output picture.[${txtred}Default 20${txtrst}]
-E The type of output figures.[${txtred}Default pdf, accept
eps/ps, tex (pictex), png, jpeg, tiff, bmp, svg and wmf)${txtrst}]
-r The resolution of output picture.[${txtred}Default 300 ppi${txtrst}]
-F Font size [${txtred}Default 14${txtrst}]
-p Preprocess data matrix to avoid 'STDERR 0 in cor(t(mat))'.
Lowercase <p>.
[${txtred}Default TRUE${txtrst}]
-e Execute script (Default) or just output the script.
[${bldred}Default TRUE${txtrst}]
-i Install the required packages. Normmaly should be TRUE if this is
your first time run s-plot.[${bldred}Default FALSE${txtrst}]
EOF
}
file=''
title=''
cluster_rows='TRUE'
cluster_cols='FALSE'
clustering_distance_rows='correlation'
clustering_distance_cols='correlation'
clustering_method='complete'
legend_breaks='NA'
color_vector='colorRampPalette(rev(brewer.pal(n=7, name="RdYlBu")))(100)'
color_type='function'
width=''
label=''
logv='FALSE'
kclu='NA'
scale='none'
execute='TRUE'
ist='FALSE'
legend=' '
na_color='grey'
uwid=20
vhig=20
bias=1
res=300
fontsize=14
ext='pdf'
xcol='green'
ycol='red'
annotation_colors='NA'
mcol='yellow'
mid_value_use='FALSE'
mid_value='Inf'
maximum='Inf'
xtics='TRUE'
xtics_angle=270
ytics='TRUE'
gradient=1
givenSepartor=''
gradientC="'green','yellow','red'"
generateNA='FALSE'
digits='FALSE'
annotation_row='NA'
annotation_col='NA'
preprocess='TRUE'
minimum='-Inf'
while getopts "hf:t:a:A:b:B:H:R:c:D:T:p:I:L:d:k:u:v:E:r:F:P:Q:x:y:M:Z:X:s:m:N:Y:Z:G:C:O:e:i:" OPTION
do
case $OPTION in
h)
echo "Help mesage"
usage
exit 1
;;
f)
file=$OPTARG
;;
t)
title=$OPTARG
;;
a)
xtics=$OPTARG
;;
A)
xtics_angle=$OPTARG
;;
b)
ytics=$OPTARG
;;
B)
bias=$OPTARG
;;
H)
cluster_cols=$OPTARG
;;
R)
cluster_rows=$OPTARG
;;
c)
clustering_method=$OPTARG
;;
D)
clustering_distance_rows=$OPTARG
;;
I)
clustering_distance_cols=$OPTARG
;;
Z)
annotation_colors=$OPTARG
;;
p)
preprocess=$OPTARG
;;
L)
logv=$OPTARG
;;
P)
annotation_row=$OPTARG
;;
Q)
annotation_col=$OPTARG
;;
d)
scale=$OPTARG
;;
k)
kclu=$OPTARG
;;
u)
uwid=$OPTARG
;;
v)
vhig=$OPTARG
;;
E)
ext=$OPTARG
;;
r)
res=$OPTARG
;;
F)
fontsize=$OPTARG
;;
x)
xcol=$OPTARG
;;
y)
ycol=$OPTARG
;;
M)
mcol=$OPTARG
;;
K)
logv_pos=$OPTARG
;;
Z)
mid_value_use=$OPTARG
;;
X)
mid_value=$OPTARG
;;
s)
minimum=$OPTARG
;;
m)
maximum=$OPTARG
;;
N)
generateNA=$OPTARG
;;
Y)
na_color=$OPTARG
;;
G)
gradient=$OPTARG
;;
C)
color_vector=$OPTARG
;;
T)
color_type=$OPTARG
;;
O)
givenSepartor=$OPTARG
;;
e)
execute=$OPTARG
;;
i)
ist=$OPTARG
;;
?)
usage
echo "Unknown parameters"
exit 1
;;
esac
done
mid=".pheatmap"
if [ -z $file ] ; then
echo 1>&2 "Please give filename."
usage
exit 1
fi
if test "$log" != ''; then
mid=${mid}".$log"
fi
if test "${scale}" == "TRUE"; then
mid=${mid}".scale"
fi
if test "${preprocess}" == "TRUE"; then
/bin/mv -f ${file} ${file}".nostd0"
dealWithSTD0.py -i ${file}".nostd0" >${file}
fi
cat <<END >${file}${mid}.r
if ($ist){
install.packages("pheatmap", repo="http://cran.us.r-project.org")
}
library(grid)
library(pheatmap)
if($gradient){
library(RColorBrewer)
}
#draw_colnames_custom <- function (coln, ...){
# m = length(coln)
# x = (1:m)/m - 1/2/m
# grid.text(coln, x=x, y=unit(0.96, "npc"), vjust=.5, hjust=1,
# rot=${xtics_angle}, gp=gpar(...))
#}
#
#
##Ref:http://stackoverflow.com/questions/15505607/diagonal-labels-orientation-on-x-axis-in-heatmaps
# Get the function to edit trace(pheatmap:::draw_colnames, edit=TRUE)
# in R console
find_coordinates = function(n, gaps, m=1:n) {
if(length(gaps)==0){
return(list(coord=unit(m/n, "npc"), size=unit(1/n,"npc")))
}
if(max(gaps)>n){
stop("Gaps do not match matrix size")
}
size = (1/n)*(unit(1, "npc")-length(gaps)*unit("4", "bigpts"))
gaps2 = apply(sapply(gaps, function(gap, x){x>gap}, m), 1, sum)
coord = m * size + (gaps2 * unit("4", "bigpts"))
return(list(coord=coord, size=size))
}
vjust <- 0
hjust <- 0.5
if(${xtics_angle}==270){
vjust <- 0.5
hjust <- 0
}else if(${xtics_angle}==45){
vjust <- .5
hjust <- 1
}else if(${xtics_angle}==0){
vjust <- 1
hjust <- 0.5
}
draw_colnames_custom <- function (coln, gaps, ...){
coord = find_coordinates(length(coln), gaps)
x = coord\$coord - 0.5 * coord\$size
if (${xtics_angle} == 90){
hjust = 1
vjust = 0.5
}
if (${xtics_angle} == 45){
hjust = 1
vjust = 0.5
}
res = textGrob(coln, x=x, y=unit(1, "npc")-unit(3, "bigpts"),
vjust = vjust, hjust=hjust, rot=${xtics_angle}, gp=gpar(...))
return(res)
}
# Overwrite default draw_colnames with your own version
assignInNamespace(x="draw_colnames", value="draw_colnames_custom",
ns=asNamespace("pheatmap"))
data <- read.table(file="$file", sep="\t", header=T, row.names=1,
check.names=F, quote="", comment="")
if ("${logv}" != "FALSE"){
#data[data==0] <- 1.0000001
#data[data==1] <- 1.0001
data <- ${logv}(data+1)
}
if ($gradient == 1){
legend_breaks = NA
} else if ($gradient == 2){
if (${mid_value} == Inf){
summary_v <- c(t(data))
legend_breaks <- unique(c(seq(summary_v[1]*0.95,summary_v[2],length=6),
seq(summary_v[2],summary_v[3],length=6),
seq(summary_v[3],summary_v[5],length=5),
seq(summary_v[5],summary_v[6]*1.05,length=5)))
} else {
legend_breaks <- unique(c(seq(summary_v[1]*0.95, ${mid_value},
length=10), seq(${mid_value},summary_v[6]*1.05,length=10)))
}
if("${digits}" != "FALSE"){
legend_breaks <- prettyNum(legend_breaks, digits=${digits})
}
print(col)
print(legend_breaks)
} else {
legend_breaks <- c($givenSepartor)
}
if ("${annotation_row}" != "NA") {
annotation_row <- read.table(file="${annotation_row}", header=T,
row.names=1, sep="\t", quote="", check.names=F, comment="")
} else {
annotation_row <- NA
}
if ("${annotation_col}" != "NA") {
annotation_col <- read.table(file="${annotation_col}", header=T,
row.names=1, sep="\t", quote="", check.names=F, comment="")
# Do not remember what this is for?
#levs <- unique(unlist(lapply(annotation_col, unique)))
#annotation_col <- data.frame(lapply(annotation_col, factor,
# levels=levs), row.names=rownames(annotation_col))
} else {
annotation_col <- NA
}
data[data>${maximum}] <- ${maximum}
if ("${minimum}" != "-Inf"){
data[data<${minimum}] <- ${minimum}
}
if ("${color_type}" == "function"){
color_vector <- ${color_vector}
} else if ("${color_type}" == "vector"){
colfunc <- colorRampPalette(${color_vector}, bias=${bias})
color_vector <- colfunc(30)
} else {
color_vector <- ${color_vector}
}
ann_colors = list(${annotation_colors})
if (ann_colors[1][1] == "NA") {
ann_colors = NA
}
pheatmap(data, kmean_k=$kclu, color=color_vector,
scale="${scale}", border_color=NA,
cluster_rows=${cluster_rows}, cluster_cols=${cluster_cols},
breaks=legend_breaks, clustering_method="${clustering_method}",
clustering_distance_rows="${clustering_distance_rows}",
clustering_distance_cols="${clustering_distance_cols}",
legend_breaks=legend_breaks, show_rownames=${ytics}, show_colnames=${xtics},
main="$title", annotation_col=annotation_col,
annotation_row=annotation_row,
annotation_colors = ann_colors,
fontsize=${fontsize}, filename="${file}${mid}.${ext}", width=${uwid},
height=${vhig})
END
if [ "$execute" == "TRUE" ]; then
Rscript ${file}${mid}.r
if [ "$?" == "0" ]; then
#/bin/rm -f ${file}${mid}.r
/bin/rm -f Rplots.pdf
fi
fi
if test "${preprocess}" == "TRUE"; then
/bin/mv -f ${file}".nostd0" ${file}
fi
#convert -density 200 -flatten ${file}${mid}.eps ${first}${mid}.png