-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSDP_solver.py
251 lines (234 loc) · 11.1 KB
/
SDP_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import cvxpy as cp
from scipy.linalg import block_diag
import scipy.sparse as sp
from numpy import linalg as LA
from math import sqrt
class LipSDP:
def __init__(self, weights, pair):
self.weight_mats = weights
self.layers=len(weights)
self.weight_dims = [0] * self.layers
for i in range(self.layers):
self.weight_dims[i] = self.weight_mats[i].shape[1]
self.construct_mat()
self.pair = pair
def solve_sdp(self, verbose):
if len(self.pair) == 2:
final_weight = self.weight_mats[-1][self.pair[0],:] - self.weight_mats[-1][self.pair[1],:]
else:
final_weight = self.weight_mats[-1][self.pair[0],:]
final_weight = np.expand_dims(final_weight, axis=0)
L_sq = cp.Variable((1,1), nonneg=True)
D = cp.Variable((1, self.n_hidden_vars), nonneg=True)
T = cp.diag(D)
Q = cp.bmat([[0*T, T],[T, -2*T]])
const_matrix = self.A_on_B.transpose() @ Q @ self.A_on_B
#Another Matrix
M = np.zeros([self.constraint_size,self.constraint_size], dtype=float)
M[self.constraint_size-self.weight_dims[-1]:, self.constraint_size-self.weight_dims[-1]:] = -final_weight.transpose()*final_weight
sparse_vars = cp.vstack([L_sq]*self.weight_dims[0])
positions = []
for i in range(self.weight_dims[0]):
positions.append([i, i])
V = np.ones(self.weight_dims[0])
I = []
J = []
for idx, (row, col) in enumerate(positions):
I.append(row + col*self.constraint_size)
J.append(idx)
reshape_mat = sp.coo_matrix((V, (I,J)), shape=(self.constraint_size*self.constraint_size, self.weight_dims[0]))
N = cp.reshape(reshape_mat @ sparse_vars, (self.constraint_size,self.constraint_size))
#The CVX optimization program
prob = cp.Problem(cp.Minimize(L_sq), [const_matrix - M - N<< 0])
#Verbose: False if not want to print out the progress from the solver
prob.solve(solver=cp.MOSEK, verbose=verbose)
return sqrt(prob.value)
def construct_mat(self):
#n_hidden_vars is the number of hidden nodes
self.n_hidden_vars = sum(self.weight_dims[1:])
#print(self.n_hidden_vars)
#Constructing some auxilary matrices for the SDP program
weights = block_diag(*self.weight_mats[:-1])
zeros_col = np.zeros((weights.shape[0], self.weight_dims[-1]))
A = np.concatenate((weights, zeros_col), axis=1)
eyes = np.identity(A.shape[0])
init_col = np.zeros((eyes.shape[0], self.weight_dims[0]))
B = np.concatenate((init_col, eyes), axis=1)
A_on_B = np.concatenate((A, B), axis = 0)
self.constraint_size = A_on_B.shape[1]
self.A_on_B = A_on_B
class ReduntSDP:
def __init__(self, weights, pair):
self.weight_mats = weights
self.layers=len(weights)
self.weight_dims = [0] * self.layers
for i in range(self.layers):
self.weight_dims[i] = self.weight_mats[i].shape[1]
#nClasses is the number of classification classes, e.g., nClasses=10 for CIFAR10
self.l2_norm()
self.construct_mat()
self.pair = pair
def l2_norm(self):
self.weight_norms = []
self.layer_matrix_norms = []
for i in range(self.layers-1):
weight = self.weight_mats[i]
prev_norm = 1
if i > 0:
#prev_norms = self.weight_norms[-1]
#prev_norm = LA.norm(prev_norms,ord=2)
prev_norm = self.layer_matrix_norms[-1]
w_norm = []
for j in range(weight.shape[0]):
w_norm.append((LA.norm(weight[j,:],ord=2)**2)*prev_norm)
self.weight_norms.append(w_norm)
self.layer_matrix_norms.append(prev_norm * (LA.norm(weight,ord=2)**2))
def construct_mat(self):
#n_hidden_vars is the number of hidden nodes
self.n_hidden_vars = sum(self.weight_dims[1:])
#Constructing some auxilary matrices for the SDP program
weights = block_diag(*self.weight_mats[:-1])
zeros_col = np.zeros((weights.shape[0], self.weight_dims[-1]))
A = np.concatenate((weights, zeros_col), axis=1)
eyes = np.identity(A.shape[0])
init_col = np.zeros((eyes.shape[0], self.weight_dims[0]))
B = np.concatenate((init_col, eyes), axis=1)
A_on_B = np.concatenate((A, B), axis = 0)
extra_col = np.zeros((A_on_B.shape[0], 1))
self.mult = np.concatenate((extra_col, A_on_B), axis=1)
self.constraint_size = self.mult.shape[1]
def solve_sdp(self):
final_weight = self.weight_mats[-1][self.pair[0],:] - self.weight_mats[-1][self.pair[1],:]
final_weight = np.expand_dims(final_weight, axis=0)
L_sq = cp.Variable((1,1), nonneg=True)
l2v = cp.Variable((1,1), nonneg=True)
D = cp.Variable((1, self.n_hidden_vars), nonneg=True)
DR = cp.Variable((self.n_hidden_vars, 1), nonneg=True)
T = cp.diag(D)
Q = cp.bmat([[0*T, T],[T, -2*T]])
#const_matrix = self.mult.transpose() @ Q @ self.mult
w_norms = []
for weight_norm in self.weight_norms:
w_norms += weight_norm
#print("w_norms size:", len(w_norms))
#Create Sparse Diagonal Variable Matrix
l2_norm_array = np.expand_dims(np.array(w_norms), axis=0)
#print(l2_norm_array.shape)
#print(DR.shape)
obj_term = L_sq-l2_norm_array@DR - l2v
#obj_term = L_sq- l2v
#print(obj_term.shape)
sparse_vars = cp.vstack([obj_term] + [l2v]*self.weight_dims[0]+[DR])
positions = []
for i in range(self.constraint_size):
positions.append([i, i])
#assert len(range(1, self.weight_dims[0]+1)) == self.weight_dims[0]
V = np.ones(self.constraint_size)
I = []
J = []
for idx, (row, col) in enumerate(positions):
I.append(row + col*self.constraint_size)
J.append(idx)
reshape_mat = sp.coo_matrix((V, (I,J)), shape=(self.constraint_size*self.constraint_size, self.constraint_size))
M = cp.reshape(reshape_mat @ sparse_vars, (self.constraint_size,self.constraint_size))
#Another Matrix
N = np.zeros([self.constraint_size,self.constraint_size])
N[0, self.constraint_size-self.weight_dims[-1]:] = -final_weight
N[self.constraint_size-self.weight_dims[-1]:, 0] = -final_weight
#The CVX optimization program
prob = cp.Problem(cp.Minimize(L_sq), [(self.mult.transpose() @ Q @ self.mult) - M - N << 0])
#Verbose: False if not want to print out the progress from the solver
#prob.solve(solver=getattr(cp, 'SCS'), verbose=True, **{'gpu': True, 'use_indirect': True, 'eps_abs':1.0, 'max_iters':500})
prob.solve(solver=cp.MOSEK, verbose=False)
return prob.value/2, [L_sq.value, l2v.value, D.value, DR.value]
class EigSDP:
def __init__(self, weights, pair):
self.weight_mats = weights
self.layers=len(weights)
self.weight_dims = [0] * self.layers
for i in range(self.layers):
self.weight_dims[i] = self.weight_mats[i].shape[1]
#nClasses is the number of classification classes, e.g., nClasses=10 for CIFAR10
self.l2_norm()
self.normalize_weights()
self.construct_mat()
self.pair = pair
def l2_norm(self):
weight1 = self.weight_mats[0]
self.weight_norms = []
for i in range(self.layers-1):
weight = self.weight_mats[i]
prev_norm = 1
if i > 0:
prev_norms = self.weight_norms[-1]
prev_norm = LA.norm(prev_norms,ord=2)
w_norm = []
for j in range(weight.shape[0]):
w_norm.append(LA.norm(weight[j,:],ord=2)*prev_norm)
self.weight_norms.append(w_norm)
def normalize_weights(self):
self.normalized_weights = []
for i in range(self.layers):
mat = self.weight_mats[i]
if i==0:
self.normalized_weights.append(mat)
else:
norm = self.weight_norms[i-1]
normalized_weight = np.matmul(mat,np.diag(np.array(norm)))
self.normalized_weights.append(normalized_weight)
def construct_mat(self):
#n_hidden_vars is the number of hidden nodes
self.n_hidden_vars = sum(self.weight_dims[1:])
#Constructing some auxilary matrices for the SDP program
weights = block_diag(*self.normalized_weights[:-1])
zeros_col = np.zeros((weights.shape[0], self.weight_dims[-1]))
A = np.concatenate((weights, zeros_col), axis=1)
#print("eyes shape", A.shape[0])
#eyes = np.identity(A.shape[0])
w_norms = []
for weight_norm in self.weight_norms:
w_norms += weight_norm
#print("weight shape", len(w_norms))
eyes = np.diag(np.array(w_norms))
init_col = np.zeros((eyes.shape[0], self.weight_dims[0]))
B = np.concatenate((init_col, eyes), axis=1)
A_on_B = np.concatenate((A, B), axis = 0)
extra_col = np.zeros((A_on_B.shape[0], 1))
self.mult = np.concatenate((extra_col, A_on_B), axis=1)
self.constraint_size = self.mult.shape[1]
def solve_sdp(self):
final_weight = self.normalized_weights[-1][self.pair[0],:] - self.normalized_weights[-1][self.pair[1],:]
D = cp.Variable((1, self.n_hidden_vars), nonneg=True)
DR1 = cp.Variable((1, 1), nonneg=True)
DR2 = cp.Variable((1, 1), nonneg=True)
DR3 = cp.Variable((self.n_hidden_vars,1), nonneg=True)
T = cp.diag(D)
Q = cp.bmat([[0*T, T],[T, -2*T]])
const_matrix = self.mult.transpose() @ Q @ self.mult
#Create Sparse Diagonal Variable Matrix
#l2_norm_array = np.array(self.weight_norms[-1])
#normed_weight = final_weight * l2_norm_array
sparse_vars = cp.vstack([DR1] + [DR2]*self.weight_dims[0]+[DR3])
positions = []
for i in range(self.constraint_size):
positions.append([i, i])
#assert len(range(1, self.weight_dims[0]+1)) == self.weight_dims[0]
V = np.ones(self.constraint_size)
I = []
J = []
for idx, (row, col) in enumerate(positions):
I.append(row + col*self.constraint_size)
J.append(idx)
reshape_mat = sp.coo_matrix((V, (I,J)), shape=(self.constraint_size*self.constraint_size, self.constraint_size))
M = cp.reshape(reshape_mat @ sparse_vars, (self.constraint_size,self.constraint_size))
#Another Matrix
N = np.zeros([self.constraint_size,self.constraint_size])
N[0, self.constraint_size-self.weight_dims[-1]:] = -final_weight
N[self.constraint_size-self.weight_dims[-1]:, 0] = -final_weight
#The CVX optimization program
prob = cp.Problem(cp.Minimize(DR1+DR2+cp.sum(DR3)), [M - (self.mult.transpose() @ Q @ self.mult) - N >> 0])
#Verbose: False if not want to print out the progress from the solver
#prob.solve(solver=getattr(cp, 'SCS'), verbose=True, **{'gpu': True, 'use_indirect': True, 'eps_abs':1.0, 'max_iters':500})
prob.solve(solver=cp.MOSEK, verbose=False)
return prob.value