-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlabelshift.py
73 lines (57 loc) · 2.11 KB
/
labelshift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
from mxnet import nd
#---------------------- utility functions used ----------------------------
def idx2onehot(a,k):
a=a.astype(int)
b = np.zeros((a.size, k))
b[np.arange(a.size), a] = 1
return b
def confusion_matrix(ytrue, ypred,k):
# C[i,j] denotes the frequency of ypred = i, ytrue = j.
n = ytrue.size
C = np.dot(idx2onehot(ypred,k).T,idx2onehot(ytrue,k))
return C/n
def confusion_matrix_probabilistic(ytrue, ypred,k):
# Input is probabilistic classifiers in forms of n by k matrices
n,d = np.shape(ypred)
C = np.dot(ypred.T, idx2onehot(ytrue,k))
return C/n
def calculate_marginal(y,k):
mu = np.zeros(shape=(k,1))
for i in range(k):
mu[i] = np.count_nonzero(y == i)
return mu/np.size(y)
def calculate_marginal_probabilistic(y,k):
return np.mean(y,axis=0)
def estimate_labelshift_ratio(ytrue_s, ypred_s, ypred_t,k):
if ypred_s.ndim == 2: # this indicates that it is probabilistic
C = confusion_matrix_probabilistic(ytrue_s,ypred_s,k)
mu_t = calculate_marginal_probabilistic(ypred_t, k)
else:
C = confusion_matrix(ytrue_s, ypred_s,k)
mu_t = calculate_marginal(ypred_t, k)
lamb = (1/min(len(ypred_s),len(ypred_t)))
wt = np.linalg.solve(np.dot(C.T, C)+lamb*np.eye(k), np.dot(C.T, mu_t))
return wt
def estimate_target_dist(wt, ytrue_s,k):
''' Input:
- wt: This is the output of estimate_labelshift_ratio)
- ytrue_s: This is the list of true labels from validation set
Output:
- An estimation of the true marginal distribution of the target set.
'''
mu_t = calculate_marginal(ytrue_s,k)
return wt*mu_t
# functions that convert beta to w and converge w to a corresponding weight function.
def beta_to_w(beta, y, k):
w = []
for i in range(k):
w.append(np.mean(beta[y.astype(int) == i]))
w = np.array(w)
return w
# a function that converts w to beta.
def w_to_beta(w,y):
return w[y.astype(int)]
def w_to_weightfunc(w):
return lambda x, y: w[y.astype(int)]
#----------------------------------------------------------------------------