forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kruskal.js
62 lines (52 loc) · 2.1 KB
/
kruskal.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import Graph from '../../../data-structures/graph/Graph';
import QuickSort from '../../sorting/quick-sort/QuickSort';
import DisjointSet from '../../../data-structures/disjoint-set/DisjointSet';
/**
* @param {Graph} graph
* @return {Graph}
*/
export default function kruskal(graph) {
// It should fire error if graph is directed since the algorithm works only
// for undirected graphs.
if (graph.isDirected) {
throw new Error('Kruskal\'s algorithms works only for undirected graphs');
}
// Init new graph that will contain minimum spanning tree of original graph.
const minimumSpanningTree = new Graph();
// Sort all graph edges in increasing order.
const sortingCallbacks = {
/**
* @param {GraphEdge} graphEdgeA
* @param {GraphEdge} graphEdgeB
*/
compareCallback: (graphEdgeA, graphEdgeB) => {
if (graphEdgeA.weight === graphEdgeB.weight) {
return 1;
}
return graphEdgeA.weight <= graphEdgeB.weight ? -1 : 1;
},
};
const sortedEdges = new QuickSort(sortingCallbacks).sort(graph.getAllEdges());
// Create disjoint sets for all graph vertices.
const keyCallback = graphVertex => graphVertex.getKey();
const disjointSet = new DisjointSet(keyCallback);
graph.getAllVertices().forEach((graphVertex) => {
disjointSet.makeSet(graphVertex);
});
// Go through all edges started from the minimum one and try to add them
// to minimum spanning tree. The criteria of adding the edge would be whether
// it is forms the cycle or not (if it connects two vertices from one disjoint
// set or not).
for (let edgeIndex = 0; edgeIndex < sortedEdges.length; edgeIndex += 1) {
/** @var {GraphEdge} currentEdge */
const currentEdge = sortedEdges[edgeIndex];
// Check if edge forms the cycle. If it does then skip it.
if (!disjointSet.inSameSet(currentEdge.startVertex, currentEdge.endVertex)) {
// Unite two subsets into one.
disjointSet.union(currentEdge.startVertex, currentEdge.endVertex);
// Add this edge to spanning tree.
minimumSpanningTree.addEdge(currentEdge);
}
}
return minimumSpanningTree;
}