forked from TencentYoutuResearch/CrowdCounting-P2PNet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
video_demo.py
163 lines (118 loc) · 4.89 KB
/
video_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import datetime
import random
import time
from pathlib import Path
import torch
import torchvision.transforms as standard_transforms
import numpy as np
from PIL import Image
import cv2
from crowd_datasets import build_dataset
from engine import *
from models import build_model
import os
import imutils
import warnings
warnings.filterwarnings('ignore')
def get_args_parser():
parser = argparse.ArgumentParser('Set parameters for P2PNet evaluation', add_help=False)
# * Backbone
parser.add_argument('--backbone', default='vgg16_bn', type=str,
help="name of the convolutional backbone to use")
parser.add_argument('--row', default=2, type=int,
help="row number of anchor points")
parser.add_argument('--line', default=2, type=int,
help="line number of anchor points")
parser.add_argument('--output_dir', default='',
help='path where to save')
parser.add_argument('--weight_path', default='',
help='path where the trained weights saved')
parser.add_argument('--video_path', default='',
help='path where of video')
parser.add_argument('--gpu_id', default=0, type=int, help='the gpu used for evaluation')
return parser
def main(args, debug=False):
os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(args.gpu_id)
print(args)
device = torch.device('cuda')
# get the P2PNet
model = build_model(args)
# move to GPU
model.to(device)
# load trained model
#using Args
"""
if args.weight_path is not None:
checkpoint = torch.load(args.weight_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
"""
#Loading file directly
checkpoint = torch.load(Path('./weights/SHTechA.pth'), map_location='cpu')
model.load_state_dict(checkpoint['model'])
# convert to eval mode
model.eval()
# create the pre-processing transform
transform = standard_transforms.Compose([
standard_transforms.ToTensor(),
standard_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
'''in video'''
fourcc = cv2.VideoWriter_fourcc(*'XVID')
cap = cv2.VideoCapture('./fair.mp4')
ret, frame = cap.read()
print(frame.shape)
'''out video'''
scale_factor = 0.4
width = frame.shape[1] #output size
height = frame.shape[0] #output size
out = cv2.VideoWriter('./demo.avi', fourcc, 30, (1280, 1280))
while True:
try:
ret, frame = cap.read()
new_width = width // 128 * 128
new_height = height // 128 * 128
scale_factor = 0.4
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor)
img_raw= frame.copy()
ori_img = frame.copy()
except:
print("Test End")
cap.release()
break
frame = frame.copy()
# pre-proccessing
img = transform(frame)
samples = torch.Tensor(img).unsqueeze(0)
samples = samples.to(device)
with torch.no_grad():
# run inference
outputs = model(samples)
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
threshold = 0.5
# filter the predictions
points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
predict_cnt = int((outputs_scores > threshold).sum())
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
print("Count: ",predict_cnt)
# draw the predictions
size = 2
for p in points:
img_to_draw = cv2.circle(img_raw , (int(p[0]), int(p[1])), size, (0, 0, 255), -1)
res = np.vstack((ori_img, img_to_draw))
cv2.putText(res, "Count:" + str(predict_cnt), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# save the visualized image
cv2.imwrite('./demo.jpg', res)
'''write in out_video'''
res = cv2.resize(res, (1280,1280))
out.write(res)
cv2.putText(img_to_draw, "Count:" + str(predict_cnt), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("dst",img_to_draw)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == '__main__':
parser = argparse.ArgumentParser('P2PNet evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)