-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathops_impl.py
2201 lines (1615 loc) · 66.4 KB
/
ops_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""ONNX ops implementation in Python + NumPy."""
# pylint: disable=too-many-lines
from inspect import signature
from typing import Iterable, List, Optional, Sequence, Set, Tuple, Union
import numpy
import onnx
import onnx.helper
from brevitas.function import max_int, min_int
from concrete.fhe import conv as fhe_conv
from concrete.fhe import maxpool as fhe_maxpool
from concrete.fhe import univariate
from scipy import special
from typing_extensions import SupportsIndex
# pylint: disable=ungrouped-imports
from concrete.ml.common import utils
from concrete.ml.common.debugging import assert_false, assert_true
from concrete.ml.onnx.onnx_impl_utils import (
compute_onnx_pool_padding,
numpy_onnx_pad,
onnx_avgpool_compute_norm_const,
rounded_comparison,
)
class RawOpOutput(numpy.ndarray):
"""Type construct that marks an ndarray as a raw output of a quantized op."""
# This function is only used for comparison operators that return boolean values by default.
def cast_to_float(inputs):
"""Cast values to floating points.
Args:
inputs (Tuple[numpy.ndarray]): The values to consider.
Returns:
Tuple[numpy.ndarray]: The float values.
"""
return tuple(map(lambda x: x.astype(numpy.float64), inputs))
class ONNXMixedFunction:
"""A mixed quantized-raw valued onnx function.
ONNX functions will take inputs which can be either quantized or float. Some functions
only take quantized inputs, but some functions take both types. For mixed functions
we need to tag the parameters that do not need quantization. Thus quantized ops
can know which inputs are not QuantizedArray and we avoid unnecessary wrapping of float
values as QuantizedArrays.
"""
def __init__(self, function, non_quant_params: Set[str], output_is_raw: bool = False):
"""Create the mixed function and raw parameter list.
Args:
function (Any): function to be decorated
non_quant_params: Set[str]: set of parameters that will not be quantized (stored
as numpy.ndarray)
output_is_raw (bool): indicates whether the op outputs a value that should
not be quantized
"""
self.non_quant_params: Set[str] = non_quant_params
bad_non_quant_params = set(non_quant_params).difference(set(signature(function).parameters))
assert_true(
len(bad_non_quant_params) == 0,
f"ONNX function {function.__name__} tagged with invalid integer parameters: "
",".join(bad_non_quant_params),
)
self.function = function # type: ignore
self.output_is_raw = output_is_raw
def __call__(self, *args, **kwargs):
"""Call the wrapped numpy function.
Args:
args (tuple[Any]): function arguments
kwargs (dict[str, Any]): function key value arguments
Returns:
result (Any): result of calling the wrapped function on the input arguments
"""
result = self.function(*args, **kwargs)
if self.output_is_raw:
result = tuple(r.view(RawOpOutput) for r in result)
return result
@property
def __name__(self):
"""Return the wrapped function name.
Returns:
result (str): name of the wrapped function
"""
return self.function.__name__
def onnx_func_raw_args(*args, output_is_raw: bool = False):
"""Decorate a numpy onnx function to flag the raw/non quantized inputs.
Args:
*args (tuple[Any]): function argument names
output_is_raw (bool): marks the function as returning raw
values that should not be quantized
Returns:
result (ONNXMixedFunction): wrapped numpy function with a list of mixed arguments
"""
def decoration(function):
"""Construct the mixed function class.
Args:
function (Any): function to be decorated
Returns:
result (ONNXMixedFunction): wrapped numpy function with a list of mixed arguments
"""
return ONNXMixedFunction(function, set(args), output_is_raw)
return decoration
def numpy_where_body(
c: numpy.ndarray,
t: numpy.ndarray,
f: Union[numpy.ndarray, int],
) -> numpy.ndarray:
"""Compute the equivalent of numpy.where.
This function is not mapped to any ONNX operator (as opposed to numpy_where). It is usable by
functions which are mapped to ONNX operators, e.g., numpy_div or numpy_where.
Args:
c (numpy.ndarray): Condition operand.
t (numpy.ndarray): True operand.
f (numpy.ndarray): False operand.
Returns:
numpy.ndarray: numpy.where(c, t, f)
"""
# Use numpy.where (it is currently supported by Concrete) once we investigate why it outputs a
# a different dtype then the following workaround
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2738
return c * t + (1.0 - c) * f
def numpy_where(
c: numpy.ndarray,
t: numpy.ndarray,
f: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute the equivalent of numpy.where.
Args:
c (numpy.ndarray): Condition operand.
t (numpy.ndarray): True operand.
f (numpy.ndarray): False operand.
Returns:
numpy.ndarray: numpy.where(c, t, f)
"""
return (numpy_where_body(c, t, f),)
def numpy_add(
a: numpy.ndarray,
b: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute add in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Add-13
Args:
a (numpy.ndarray): First operand.
b (numpy.ndarray): Second operand.
Returns:
Tuple[numpy.ndarray]: Result, has same element type as two inputs
"""
return (a + b,)
# input, min and max are Python built-in but we need to match the ONNX naming, ignore the lint
# pylint: disable=redefined-builtin
@onnx_func_raw_args("min", "max")
def numpy_clip(a: numpy.ndarray, min=None, max=None) -> Tuple[numpy.ndarray]:
"""Compute clip in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Clip-13
Args:
a (numpy.ndarray): Input tensor whose elements to be clipped.
min ([type], optional): Minimum value, under which element is replaced by min.
It must be a scalar(tensor of empty shape).
Defaults to None.
max ([type], optional): Maximum value, above which element is replaced by max.
It must be a scalar(tensor of empty shape).
Defaults to None.
Returns:
Tuple[numpy.ndarray]: Output tensor with clipped input elements.
"""
assert_true(
min is not None and max is not None,
f"{numpy_clip.__name__} currently does not support passing `None` "
"for the min or max inputs.",
)
return (numpy.clip(a, min, max),)
# pylint: enable=redefined-builtin
def numpy_constant(**kwargs):
"""Return the constant passed as a kwarg.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Constant-13
Args:
**kwargs: keyword arguments
Returns:
Any: The stored constant.
"""
# Given the variety of possible kwargs (see spec), we just check there is only one kwargs and
# return the corresponding value
assert len(kwargs) == 1
single_key = next(iter(kwargs.keys()))
return (kwargs[single_key],)
# transA and transB are not snake case but need to match ONNX attribute naming, ignore the lint
# pylint: disable=invalid-name
# 1 is technically an int but is accepted by mypy as a float (and it simplifies our life for
# compilation) so instead of passing 1.0 by default 1 is passed
def numpy_gemm(
a: numpy.ndarray,
b: numpy.ndarray,
c: Optional[numpy.ndarray] = None,
*,
alpha: float = 1,
beta: float = 1,
transA: int = 0,
transB: int = 0,
) -> Tuple[numpy.ndarray]:
"""Compute Gemm in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Gemm-13
Args:
a (numpy.ndarray): Input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M)
if transA is non-zero.
b (numpy.ndarray): Input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K)
if transB is non-zero.
c (Optional[numpy.ndarray]): Optional input tensor C. If not specified, the
computation is done as if C is a scalar 0. The shape of C should be unidirectional
broadcastable to (M, N).
Defaults to None.
alpha (float): Scalar multiplier for the product of input tensors A * B.
Defaults to 1.
beta (float): Scalar multiplier for input tensor C.
Defaults to 1.
transA (int): Whether A should be transposed. The type is kept as int as it is the
type used by ONNX and it can easily be interpreted by Python as a boolean.
Defaults to 0.
transB (int): Whether B should be transposed. The type is kept as int as it is the
type used by ONNX and it can easily be interpreted by Python as a boolean.
Defaults to 0.
Returns:
Tuple[numpy.ndarray]: The tuple containing the result tensor
"""
# If alpha and beta are integer, apply the int type for Concrete to see they are integers
processed_alpha = int(alpha) if round(alpha) == alpha else alpha
processed_beta = int(beta) if round(beta) == beta else beta
a_prime = numpy.transpose(a) if transA else a
b_prime = numpy.transpose(b) if transB else b
c_prime: Union[numpy.ndarray, float] = c if c is not None else 0
y = processed_alpha * numpy.matmul(a_prime, b_prime) + processed_beta * c_prime
return (y,)
def numpy_matmul(
a: numpy.ndarray,
b: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute matmul in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#MatMul-13
Args:
a (numpy.ndarray): N-dimensional matrix A
b (numpy.ndarray): N-dimensional matrix B
Returns:
Tuple[numpy.ndarray]: Matrix multiply results from A * B
"""
return (numpy.matmul(a, b),)
def numpy_relu(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute relu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Relu-14
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.maximum(x, 0),)
def numpy_sigmoid(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute sigmoid in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Sigmoid-13
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.exp(-numpy.logaddexp(0, -x)),)
def numpy_softmax(x, axis=1, keepdims=True):
"""Compute softmax in numpy according to ONNX spec.
Softmax is currently not supported in FHE.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#softmax-13
Args:
x (numpy.ndarray): Input tensor
axis (None, int, tuple of int): Axis or axes along which a softmax's sum is performed. If
None, it will sum all of the elements of the input array. If axis is negative it counts
from the last to the first axis. Default to 1.
keepdims (bool): If True, the axes which are reduced along the sum are left in the result as
dimensions with size one. Default to True.
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
x = numpy.exp(x)
x /= numpy.sum(x, axis=axis, keepdims=keepdims)
return (x,)
def numpy_cos(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute cos in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Cos-7
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.cos(x),) # pragma: no cover
def numpy_cosh(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute cosh in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Cosh-9
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.cosh(x),) # pragma: no cover
def numpy_sin(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute sin in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Sin-7
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.sin(x),) # pragma: no cover
def numpy_sinh(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute sinh in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Sinh-9
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.sinh(x),) # pragma: no cover
def numpy_tan(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute tan in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Tan-7
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.tan(x),) # pragma: no cover
def numpy_tanh(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute tanh in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Tanh-13
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.tanh(x),)
def numpy_acos(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute acos in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Acos-7
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.arccos(x),) # pragma: no cover
def numpy_acosh(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute acosh in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Acosh-9
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.arccosh(x),) # pragma: no cover
def numpy_asin(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute asin in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Asin-7
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.arcsin(x),) # pragma: no cover
def numpy_asinh(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute sinh in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Asinh-9
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.arcsinh(x),) # pragma: no cover
def numpy_atan(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute atan in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Atan-7
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.arctan(x),) # pragma: no cover
def numpy_atanh(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute atanh in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Atanh-9
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.arctanh(x),) # pragma: no cover
def numpy_elu(x: numpy.ndarray, *, alpha: float = 1) -> Tuple[numpy.ndarray]:
"""Compute elu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Elu-6
Args:
x (numpy.ndarray): Input tensor
alpha (float): Coefficient
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return numpy_where(x > 0, x, alpha * (numpy.exp(x) - 1))
def numpy_selu(
x: numpy.ndarray,
*,
alpha: float = 1.6732632423543772848170429916717,
gamma: float = 1.0507009873554804934193349852946,
) -> Tuple[numpy.ndarray]:
"""Compute selu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Selu-6
Args:
x (numpy.ndarray): Input tensor
alpha (float): Coefficient
gamma (float): Coefficient
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return numpy_where(x > 0, gamma * x, (gamma * alpha) * (numpy.exp(x) - 1))
def numpy_celu(x: numpy.ndarray, *, alpha: float = 1) -> Tuple[numpy.ndarray]:
"""Compute celu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Celu-12
Args:
x (numpy.ndarray): Input tensor
alpha (float): Coefficient
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.maximum(0, x) + numpy.minimum(0, alpha * (numpy.exp(x / alpha) - 1)),)
def numpy_leakyrelu(x: numpy.ndarray, *, alpha: float = 0.01) -> Tuple[numpy.ndarray]:
"""Compute leakyrelu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#LeakyRelu-6
Args:
x (numpy.ndarray): Input tensor
alpha (float): Coefficient
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return numpy_where(x > 0, x, alpha * x)
def numpy_thresholdedrelu(x: numpy.ndarray, *, alpha: float = 1) -> Tuple[numpy.ndarray]:
"""Compute thresholdedrelu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#ThresholdedRelu-10
Args:
x (numpy.ndarray): Input tensor
alpha (float): Coefficient
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
if x > alpha: # pragma: no cover
return (x,) # pragma: no cover
return (numpy.zeros_like(x),) # pragma: no cover
def numpy_hardsigmoid(
x: numpy.ndarray, *, alpha: float = 0.2, beta: float = 0.5
) -> Tuple[numpy.ndarray]:
"""Compute hardsigmoid in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#HardSigmoid-6
Args:
x (numpy.ndarray): Input tensor
alpha (float): Coefficient
beta (float): Coefficient
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.maximum(0, numpy.minimum(1, alpha * x + beta)),)
def numpy_softplus(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute softplus in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Softplus-1
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.log(numpy.exp(x) + 1),)
def numpy_abs(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute abs in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Abs-13
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.abs(x),)
def numpy_div(
a: numpy.ndarray,
b: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute div in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Div-14
Args:
a (numpy.ndarray): Input tensor
b (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
# Remove the where op once the following issue is explained
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/857
bp = numpy_where_body(b != 0, b, 1)
# Check if processing non-encrypted constants.
# We handle non-encrypted constants differently because integer constants
# must use `floor_divide`
if isinstance(a, RawOpOutput) and numpy.issubdtype(a.dtype, numpy.integer):
return (numpy.floor_divide(a, bp),)
# This branch may be processing encrypted data or float clear constants that are initializers
# In FHE for integer values we want floating point behavior that produces TLUs without
# loss of precision.
return (numpy.divide(a, bp),)
def numpy_mul(
a: numpy.ndarray,
b: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute mul in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Mul-14
Args:
a (numpy.ndarray): Input tensor
b (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (a * b,)
def numpy_sub(
a: numpy.ndarray,
b: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute sub in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Sub-14
Args:
a (numpy.ndarray): Input tensor
b (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (a - b,)
def numpy_log(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute log in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Log-13
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
# Epsilon is here to avoid problems with 0 or negative values, which may happen when Concrete
# creates the table (even if these problematic values would normally never be used)
epsilon = 10**-8
return (numpy.log(numpy.maximum(x, epsilon)),)
@onnx_func_raw_args("slope")
def numpy_prelu(
x: numpy.ndarray,
slope: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute prelu in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#prelu-16
Args:
x (numpy.ndarray): Input tensor
slope (numpy.ndarray): Slope of PRelu
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
a = numpy.minimum(0, slope * x)
b = numpy.maximum(0, x)
return (a + b,)
def numpy_erf(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute erf in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Erf-13
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (univariate(special.erf)(x),) # pylint: disable=no-member
def numpy_hardswish(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute hardswish in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#hardswish-14
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
alpha = 1.0 / 6
beta = 0.5
r = x * numpy.maximum(0, numpy.minimum(1, alpha * x + beta))
return (r,)
def numpy_exp(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute exponential in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Exp-13
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: The exponential of the input tensor computed element-wise
"""
return (numpy.exp(x),)
def numpy_equal(
x: numpy.ndarray,
y: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute equal in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Equal-11
Args:
x (numpy.ndarray): Input tensor
y (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.equal(x, y),)
# Remove `# pragma: no cover` once the following issue will be resolved
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4179
def rounded_numpy_equal_for_trees(
x: numpy.ndarray,
y: numpy.ndarray,
*,
lsbs_to_remove_for_trees: Optional[int] = None,
) -> Tuple[numpy.ndarray]:
"""Compute rounded equal in numpy according to ONNX spec for tree-based models only.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Equal-11
Args:
x (numpy.ndarray): Input tensor
y (numpy.ndarray): Input tensor
lsbs_to_remove_for_trees (Optional[int]): Number of the least significant bits to remove
for tree-based models only.
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
# For tree-based models in the second stage, x == y is equivalent to x <= y
# Because y is the max sum, see this paper: https://arxiv.org/pdf/2010.04804.pdf
# The approach x <= y, is equivalent to:
# option 1: x - y <= 0 => round_bit_pattern(x - y + half) <= 0 or
# option 2: y - x >= 0 => round_bit_pattern(y - x - half) >= 0
# Option 2 is selected because it adheres to the established pattern in `rounded_comparison`
# which does: (a - b) - half.
if lsbs_to_remove_for_trees is not None and lsbs_to_remove_for_trees > 0:
return rounded_comparison(
y, x, lsbs_to_remove_for_trees, operation=lambda x: x >= 0
) # pragma: no cover
# Else, default numpy_equal operator
return (numpy.equal(x, y),)
def numpy_equal_float(
x: numpy.ndarray,
y: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute equal in numpy according to ONNX spec and cast outputs to floats.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Equal-13
Args:
x (numpy.ndarray): Input tensor
y (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return cast_to_float(numpy_equal(x, y))
def numpy_not(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute not in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Not-1
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.logical_not(x),)
def numpy_not_float(
x: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute not in numpy according to ONNX spec and cast outputs to floats.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Not-1
Args:
x (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return cast_to_float(numpy_not(x))
def numpy_greater(
x: numpy.ndarray,
y: numpy.ndarray,
) -> Tuple[numpy.ndarray]:
"""Compute greater in numpy according to ONNX spec.
See https://github.com/onnx/onnx/blob/main/docs/Changelog.md#Greater-13
Args:
x (numpy.ndarray): Input tensor
y (numpy.ndarray): Input tensor
Returns:
Tuple[numpy.ndarray]: Output tensor
"""
return (numpy.greater(x, y),)
def numpy_greater_float(