-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathfusenet_train.py
53 lines (44 loc) · 2.45 KB
/
fusenet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import datetime
import torch
from torch.utils import data
from fusenet_solver import Solver
from utils.data_utils import get_data
from utils.loss_utils import cross_entropy_2d
from options.train_options import TrainOptions
from utils.utils import print_time_info
if __name__ == '__main__':
opt = TrainOptions().parse()
dset_name = os.path.basename(opt.dataroot)
if dset_name.lower().find('nyu') is not -1:
dset_info = {'NYU': 40}
elif dset_name.lower().find('sun') is not -1:
dset_info = {'SUN': 37}
else:
raise NameError('Name of the dataset file should accordingly contain either nyu or sun in it')
print('[INFO] %s dataset is being processed' % list(dset_info.keys())[0])
train_data, test_data = get_data(opt, use_train=True, use_test=True)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=opt.num_workers)
print("[INFO] Data loaders for %s dataset have been created" % list(dset_info.keys())[0])
if opt.use_class:
# Grid search for lambda values
# Lambda is the coefficient of the classification loss
# i.e.: total_loss = segmentation_loss + lambda * classification_loss
start, end, steps = opt.lambda_class_range
lambdas = torch.linspace(start, end, steps=int(steps)).cuda(opt.gpu_id)
for i, lam in enumerate(lambdas):
start_date_time = datetime.datetime.now().replace(microsecond=0)
print('[INFO] Training session: [%i of %i]' % (i+1, steps))
print('[INFO] Lambda value for this training session: %.5f' % lam)
solver = Solver(opt, dset_info, loss_func=cross_entropy_2d)
solver.train_model(train_loader, test_loader, num_epochs=opt.num_epochs, log_nth=opt.print_freq, lam=lam)
end_date_time = datetime.datetime.now().replace(microsecond=0)
print_time_info(start_date_time, end_date_time)
else:
# Run an individual training session
start_date_time = datetime.datetime.now().replace(microsecond=0)
solver = Solver(opt, dset_info, loss_func=cross_entropy_2d)
solver.train_model(train_loader, test_loader, num_epochs=opt.num_epochs, log_nth=opt.print_freq)
end_date_time = datetime.datetime.now().replace(microsecond=0)
print_time_info(start_date_time, end_date_time)