-
Notifications
You must be signed in to change notification settings - Fork 17
/
QPEP_grobner.cpp
147 lines (133 loc) · 4.75 KB
/
QPEP_grobner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// LibQPEP: A Library for Globally Optimal Solving Quadratic Pose Estimation Problems,
// It also gives highly accurate uncertainty description of the solutions.
//
// Author: Jin Wu
// Affiliation: Hong Kong University of Science and Technology (HKUST)
// Emails: jin_wu_uestc@hotmail.com; jwucp@connect.ust.hk
// Reference: Wu, J., et al. (2022) Quadratic Pose Estimation Problems:
// Globally Optimal Solutions,
// Solvability/Observability Analysis,
// and Uncertainty Description.
// IEEE Transactions on Robotics.
// https://doi.org/10.1109/TRO.2022.3155880
//
//
// QPEP_grobner.cpp: Solving QPEPs using different Groebner-basis methods
#include "QPEP_grobner.h"
#include "utils.h"
#include <cstdlib>
#include <numeric>
static double J_func_wrapper(const Eigen::Quaterniond& q,
const Eigen::Vector3d& t,
const Eigen::MatrixXd& coef_J_pure,
mon_J_pure_func_handle mon_J_pure_func)
{
double J = 0;
int num = coef_J_pure.cols();
std::vector<double> mon = mon_J_pure_func(q, t);
for(int i = 0; i < num; ++i)
{
J = J + coef_J_pure(0, i) * mon[i];
}
return J;
}
struct QPEP_runtime QPEP_WQ_grobner(Eigen::Matrix3d& R,
Eigen::Vector3d& t,
Eigen::Matrix4d& X,
double* min,
const Eigen::MatrixXd& W,
const Eigen::MatrixXd& Q,
const solver_func_handle& solver_func,
const mon_J_pure_func_handle& mon_J_pure_func,
const t_func_handle& t_func,
const Eigen::MatrixXd& coef_J_pure,
const Eigen::MatrixXd& coefs_tq,
const Eigen::MatrixXd& pinvG,
const int* perm,
const struct QPEP_options& opt)
{
struct QPEP_runtime stat;
int solution_size = 0;
Eigen::VectorXd data;
if(opt.ModuleName == "solver_WQ")
{
if(opt.ModuleName == "solver_WQ")
{
data.resize(272);
data << vec(W), vec(Q);
solution_size = 40;
}
}
else if(opt.ModuleName == "solver_WQ_1_2_3_4_5_9_13_17_33_49_approx" ||
opt.ModuleName == "solver_WQ_approx")
{
int permutation[3] = {0, 1, 2};
if(perm)
{
permutation[0] = perm[0];
permutation[1] = perm[1];
permutation[2] = perm[2];
}
Eigen::Matrix<double, 3, 64> W_;
Eigen::Matrix<double, 3, 4> Q_;
for(int i = 0; i < 3; ++i)
{
W_.row(i) = W.row(permutation[i]);
Q_.row(i) = Q.row(permutation[i]);
}
Eigen::MatrixXd unique;
if(opt.ModuleName == "solver_WQ_1_2_3_4_5_9_13_17_33_49_approx") {
int unique_idx[16] = {6, 7, 8, 11, 12, 16, 22, 23, 24, 27, 28, 32, 43, 44, 48, 64};
unique.resize(3, 16);
for (int i = 0; i < 16; ++i) {
unique.col(i) = W_.col(unique_idx[i] - 1).topRows(3);
}
data.resize(60);
data << vec(unique), vec(Q_.topRows(3));
solution_size = 27;
}
else if(opt.ModuleName == "solver_WQ_approx")
{
data.resize(204);
data << vec(W_.topRows(3)), vec(Q_.topRows(3));
solution_size = 27;
}
}
assert(solution_size > 0);
Eigen::MatrixXcd sols;
sols.resize(4, solution_size);
stat = solver_func(sols, data, opt);
clock_t time1 = clock();
Eigen::VectorXd q0_, q1_, q2_, q3_;
q0_.resize(solution_size);
q1_.resize(solution_size);
q2_.resize(solution_size);
q3_.resize(solution_size);
q0_ = sols.row(0).transpose().real();
q1_ = sols.row(1).transpose().real();
q2_ = sols.row(2).transpose().real();
q3_ = sols.row(3).transpose().real();
std::vector<Eigen::Quaterniond> qs;
Eigen::MatrixXd ts;
ts.resize(3, solution_size);
std::vector<double> Js;
for(int i = 0; i < solution_size; ++i)
{
Eigen::Quaterniond qq(q3_(i), q0_(i), q1_(i), q2_(i));
qq.normalize();
Eigen::Vector3d tt = t_func(pinvG, coefs_tq, qq);
qs.push_back(qq);
ts.col(i) = tt;
Js.push_back(J_func_wrapper(qq, tt, coef_J_pure, mon_J_pure_func));
}
std::vector<size_t> idx;
sort_indices(idx, Js);
R = q2R(qs[idx[0]]);
t = ts.col(idx[0]);
X << R, t, Eigen::Vector3d::Zero(3).transpose(), 1.0;
clock_t time2 = clock();
stat.timeEigen = (time2 - time1) / double(CLOCKS_PER_SEC);
stat.statusEigen = 0;
stat.lossGrobner = Js[idx[0]];
return stat;
}