-
Notifications
You must be signed in to change notification settings - Fork 504
/
simple-example.rs
339 lines (289 loc) · 11.2 KB
/
simple-example.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
use std::marker::PhantomData;
use group::ff::Field;
use halo2_proofs::{
circuit::{AssignedCell, Chip, Layouter, Region, SimpleFloorPlanner, Value},
plonk::{Advice, Circuit, Column, ConstraintSystem, Error, Fixed, Instance, Selector},
poly::Rotation,
};
// ANCHOR: instructions
trait NumericInstructions<F: Field>: Chip<F> {
/// Variable representing a number.
type Num;
/// Loads a number into the circuit as a private input.
fn load_private(&self, layouter: impl Layouter<F>, a: Value<F>) -> Result<Self::Num, Error>;
/// Loads a number into the circuit as a fixed constant.
fn load_constant(&self, layouter: impl Layouter<F>, constant: F) -> Result<Self::Num, Error>;
/// Returns `c = a * b`.
fn mul(
&self,
layouter: impl Layouter<F>,
a: Self::Num,
b: Self::Num,
) -> Result<Self::Num, Error>;
/// Exposes a number as a public input to the circuit.
fn expose_public(
&self,
layouter: impl Layouter<F>,
num: Self::Num,
row: usize,
) -> Result<(), Error>;
}
// ANCHOR_END: instructions
// ANCHOR: chip
/// The chip that will implement our instructions! Chips store their own
/// config, as well as type markers if necessary.
struct FieldChip<F: Field> {
config: FieldConfig,
_marker: PhantomData<F>,
}
// ANCHOR_END: chip
// ANCHOR: chip-config
/// Chip state is stored in a config struct. This is generated by the chip
/// during configuration, and then stored inside the chip.
#[derive(Clone, Debug)]
struct FieldConfig {
/// For this chip, we will use two advice columns to implement our instructions.
/// These are also the columns through which we communicate with other parts of
/// the circuit.
advice: [Column<Advice>; 2],
/// This is the public input (instance) column.
instance: Column<Instance>,
// We need a selector to enable the multiplication gate, so that we aren't placing
// any constraints on cells where `NumericInstructions::mul` is not being used.
// This is important when building larger circuits, where columns are used by
// multiple sets of instructions.
s_mul: Selector,
}
impl<F: Field> FieldChip<F> {
fn construct(config: <Self as Chip<F>>::Config) -> Self {
Self {
config,
_marker: PhantomData,
}
}
fn configure(
meta: &mut ConstraintSystem<F>,
advice: [Column<Advice>; 2],
instance: Column<Instance>,
constant: Column<Fixed>,
) -> <Self as Chip<F>>::Config {
meta.enable_equality(instance);
meta.enable_constant(constant);
for column in &advice {
meta.enable_equality(*column);
}
let s_mul = meta.selector();
// Define our multiplication gate!
meta.create_gate("mul", |meta| {
// To implement multiplication, we need three advice cells and a selector
// cell. We arrange them like so:
//
// | a0 | a1 | s_mul |
// |-----|-----|-------|
// | lhs | rhs | s_mul |
// | out | | |
//
// Gates may refer to any relative offsets we want, but each distinct
// offset adds a cost to the proof. The most common offsets are 0 (the
// current row), 1 (the next row), and -1 (the previous row), for which
// `Rotation` has specific constructors.
let lhs = meta.query_advice(advice[0], Rotation::cur());
let rhs = meta.query_advice(advice[1], Rotation::cur());
let out = meta.query_advice(advice[0], Rotation::next());
let s_mul = meta.query_selector(s_mul);
// Finally, we return the polynomial expressions that constrain this gate.
// For our multiplication gate, we only need a single polynomial constraint.
//
// The polynomial expressions returned from `create_gate` will be
// constrained by the proving system to equal zero. Our expression
// has the following properties:
// - When s_mul = 0, any value is allowed in lhs, rhs, and out.
// - When s_mul != 0, this constrains lhs * rhs = out.
vec![s_mul * (lhs * rhs - out)]
});
FieldConfig {
advice,
instance,
s_mul,
}
}
}
// ANCHOR_END: chip-config
// ANCHOR: chip-impl
impl<F: Field> Chip<F> for FieldChip<F> {
type Config = FieldConfig;
type Loaded = ();
fn config(&self) -> &Self::Config {
&self.config
}
fn loaded(&self) -> &Self::Loaded {
&()
}
}
// ANCHOR_END: chip-impl
// ANCHOR: instructions-impl
/// A variable representing a number.
#[derive(Clone)]
struct Number<F: Field>(AssignedCell<F, F>);
impl<F: Field> NumericInstructions<F> for FieldChip<F> {
type Num = Number<F>;
fn load_private(
&self,
mut layouter: impl Layouter<F>,
value: Value<F>,
) -> Result<Self::Num, Error> {
let config = self.config();
layouter.assign_region(
|| "load private",
|mut region| {
region
.assign_advice(|| "private input", config.advice[0], 0, || value)
.map(Number)
},
)
}
fn load_constant(
&self,
mut layouter: impl Layouter<F>,
constant: F,
) -> Result<Self::Num, Error> {
let config = self.config();
layouter.assign_region(
|| "load constant",
|mut region| {
region
.assign_advice_from_constant(|| "constant value", config.advice[0], 0, constant)
.map(Number)
},
)
}
fn mul(
&self,
mut layouter: impl Layouter<F>,
a: Self::Num,
b: Self::Num,
) -> Result<Self::Num, Error> {
let config = self.config();
layouter.assign_region(
|| "mul",
|mut region: Region<'_, F>| {
// We only want to use a single multiplication gate in this region,
// so we enable it at region offset 0; this means it will constrain
// cells at offsets 0 and 1.
config.s_mul.enable(&mut region, 0)?;
// The inputs we've been given could be located anywhere in the circuit,
// but we can only rely on relative offsets inside this region. So we
// assign new cells inside the region and constrain them to have the
// same values as the inputs.
a.0.copy_advice(|| "lhs", &mut region, config.advice[0], 0)?;
b.0.copy_advice(|| "rhs", &mut region, config.advice[1], 0)?;
// Now we can assign the multiplication result, which is to be assigned
// into the output position.
let value = a.0.value().copied() * b.0.value();
// Finally, we do the assignment to the output, returning a
// variable to be used in another part of the circuit.
region
.assign_advice(|| "lhs * rhs", config.advice[0], 1, || value)
.map(Number)
},
)
}
fn expose_public(
&self,
mut layouter: impl Layouter<F>,
num: Self::Num,
row: usize,
) -> Result<(), Error> {
let config = self.config();
layouter.constrain_instance(num.0.cell(), config.instance, row)
}
}
// ANCHOR_END: instructions-impl
// ANCHOR: circuit
/// The full circuit implementation.
///
/// In this struct we store the private input variables. We use `Option<F>` because
/// they won't have any value during key generation. During proving, if any of these
/// were `None` we would get an error.
#[derive(Default)]
struct MyCircuit<F: Field> {
constant: F,
a: Value<F>,
b: Value<F>,
}
impl<F: Field> Circuit<F> for MyCircuit<F> {
// Since we are using a single chip for everything, we can just reuse its config.
type Config = FieldConfig;
type FloorPlanner = SimpleFloorPlanner;
fn without_witnesses(&self) -> Self {
Self::default()
}
fn configure(meta: &mut ConstraintSystem<F>) -> Self::Config {
// We create the two advice columns that FieldChip uses for I/O.
let advice = [meta.advice_column(), meta.advice_column()];
// We also need an instance column to store public inputs.
let instance = meta.instance_column();
// Create a fixed column to load constants.
let constant = meta.fixed_column();
FieldChip::configure(meta, advice, instance, constant)
}
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl Layouter<F>,
) -> Result<(), Error> {
let field_chip = FieldChip::<F>::construct(config);
// Load our private values into the circuit.
let a = field_chip.load_private(layouter.namespace(|| "load a"), self.a)?;
let b = field_chip.load_private(layouter.namespace(|| "load b"), self.b)?;
// Load the constant factor into the circuit.
let constant =
field_chip.load_constant(layouter.namespace(|| "load constant"), self.constant)?;
// We only have access to plain multiplication.
// We could implement our circuit as:
// asq = a*a
// bsq = b*b
// absq = asq*bsq
// c = constant*asq*bsq
//
// but it's more efficient to implement it as:
// ab = a*b
// absq = ab^2
// c = constant*absq
let ab = field_chip.mul(layouter.namespace(|| "a * b"), a, b)?;
let absq = field_chip.mul(layouter.namespace(|| "ab * ab"), ab.clone(), ab)?;
let c = field_chip.mul(layouter.namespace(|| "constant * absq"), constant, absq)?;
// Expose the result as a public input to the circuit.
field_chip.expose_public(layouter.namespace(|| "expose c"), c, 0)
}
}
// ANCHOR_END: circuit
fn main() {
use halo2_proofs::{dev::MockProver, pasta::Fp};
// ANCHOR: test-circuit
// The number of rows in our circuit cannot exceed 2^k. Since our example
// circuit is very small, we can pick a very small value here.
let k = 4;
// Prepare the private and public inputs to the circuit!
let constant = Fp::from(7);
let a = Fp::from(2);
let b = Fp::from(3);
let c = constant * a.square() * b.square();
// Instantiate the circuit with the private inputs.
let circuit = MyCircuit {
constant,
a: Value::known(a),
b: Value::known(b),
};
// Arrange the public input. We expose the multiplication result in row 0
// of the instance column, so we position it there in our public inputs.
let mut public_inputs = vec![c];
// Given the correct public input, our circuit will verify.
let prover = MockProver::run(k, &circuit, vec![public_inputs.clone()]).unwrap();
assert_eq!(prover.verify(), Ok(()));
// If we try some other public input, the proof will fail!
public_inputs[0] += Fp::one();
let prover = MockProver::run(k, &circuit, vec![public_inputs]).unwrap();
assert!(prover.verify().is_err());
// ANCHOR_END: test-circuit
}