Ubuntu 16.04
Anaconda
withpython=3.6
pytorch>=1.3
torchvision
withpillow<7
cuda=10.1
- others:
pip install termcolor opencv-python tensorboard h5py easydict
- note
Shape Classification on ModelNet40
You can download ModelNet40 for here (1.6 GB). Unzip and move (or link) it to data/ModelNet40/modelnet40_normal_resampled
.
Part Segmentation on PartNet
You can download PartNet dataset from the ShapeNet official webpage (8.0 GB). Unzip and move (or link) it to data/PartNet/sem_seg_h5
.
Part Segmentation on ShapeNetPart
You can download ShapeNetPart dataset from here (635M). Unzip and move (or link) it to data/ShapeNetPart/shapenetcore_partanno_segmentation_benchmark_v0
.
Scene Segmentation on S3DIS
You can download the S3DIS dataset from here (4.8 GB). You only need to download the file named Stanford3dDataset_v1.2.zip
, unzip and move (or link) it to data/S3DIS/Stanford3dDataset_v1.2
.
The file structure should look like:
<pt-code-root>
├── cfgs
│ ├── modelnet
│ ├── partnet
│ └── s3dis
├── data
│ ├── ModelNet40
│ │ └── modelnet40_normal_resampled
│ │ ├── modelnet10_shape_names.txt
│ │ ├── modelnet10_test.txt
│ │ ├── modelnet10_train.txt
│ │ ├── modelnet40_shape_names.txt
│ │ ├── modelnet40_test.txt
│ │ ├── modelnet40_train.txt
│ │ ├── airplane
│ │ ├── bathtub
│ │ └── ...
│ ├── PartNet
│ │ └── sem_seg_h5
│ │ ├── Bag-1
│ │ ├── Bed-1
│ │ ├── Bed-2
│ │ ├── Bed-3
│ │ ├── Bottle-1
│ │ ├── Bottle-3
│ │ └── ...
│ ├── ShapeNetPart
│ │ └── shapenetcore_partanno_segmentation_benchmark_v0
│ │ ├── README.txt
│ │ ├── synsetoffset2category.txt
│ │ ├── train_test_split
│ │ ├── 02691156
│ │ ├── 02773838
│ │ ├── 02954340
│ │ ├── 02958343
│ │ ├── 03001627
│ │ ├── 03261776
│ │ └── ...
│ └── S3DIS
│ └── Stanford3dDataset_v1.2
│ ├── Area_1
│ ├── Area_2
│ ├── Area_3
│ ├── Area_4
│ ├── Area_5
│ └── Area_6
├── init.sh
├── datasets
├── function
├── models
├── ops
└── utils
sh init.sh
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
function/train_modelnet_dist.py --cfg <config file> [--log_dir <log directory>]
<port_num>
is the port number used for distributed training, you can choose like 12347.<config file>
is the yaml file that determines most experiment settings. Most config file are in thecfgs
directory.<log directory>
is the directory that the log file, checkpoints will be saved, default islog
.
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
function/train_partnet_dist.py --cfg <config file> [--log_dir <log directory>]
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
function/train_shapenetpart_dist.py --cfg <config file> [--log_dir <log directory>]
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
function/train_s3dis_dist.py --cfg <config file> [--log_dir <log directory>]
For evaluation, we recommend using 1 gpu for more precise result.
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node 1 \
function/evaluate_modelnet_dist.py --cfg <config file> --load_path <checkpoint> [--log_dir <log directory>]
<port_num>
is the port number used for distributed evaluation, you can choose like 12347.<config file>
is the yaml file that determines most experiment settings. Most config file are in thecfgs
directory.<checkpoint>
is the model checkpoint used for evaluating.<log directory>
is the directory that the log file, checkpoints will be saved, default islog_eval
.
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node 1 \
function/evaluate_partnet_dist.py --cfg <config file> --load_path <checkpoint> [--log_dir <log directory>]
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node 1 \
function/evaluate_shapenetpart_dist.py --cfg <config file> --load_path <checkpoint> [--log_dir <log directory>]
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node 1 \
function/evaluate_s3dis_dist.py --cfg <config file> --load_path <checkpoint> [--log_dir <log directory>]
Method | Acc | Model |
---|---|---|
Point-wise MLP | 93.0 | Google / Baidu(fj13) |
Pseudo Grid | 93.1 | Google / Baidu(gmh5) |
Adapt Weights | 92.9 | Google / Baidu(bbus) |
PosPool | 93.0 | Google / Baidu(wuuv) |
PosPool* | 93.3 | Google / Baidu(qcc6) |
Method | mIoU | Model |
---|---|---|
Point-wise MLP | 66.3 | Google / Baidu(53as) |
Pseudo Grid | 65.0 | Google / Baidu(8skn) |
Adapt Weights | 64.5 | Google / Baidu(b7zv) |
PosPool | 65.5 | Google / Baidu(z752) |
PosPool* | 65.5 | Google / Baidu(r96f) |
Data iteration indices: Google / Baidu(m5bp)
Method | mIoU (val) | mIoU (test) | Model |
---|---|---|---|
Point-wise MLP | 49.1 | 82.5 | Google / Baidu(wxff) |
Pseudo Grid | 50.6 | 53.3 | Google / Baidu(n6b7) |
Adapt Weights | 50.5 | 52.9 | Google / Baidu(pc22) |
PosPool | 50.5 | 53.6 | Google / Baidu(3qv5) |
PosPool* | 51.1 | 53.7 | Google / Baidu(czyq) |
Method | mIoU | msIoU | Acc | Model |
---|---|---|---|---|
Point-wise MLP | 85.7 | 84.1 | 94.5 | Google / Baidu(mi2m) |
Pseudo Grid | 86.0 | 84.3 | 94.6 | Google / Baidu(wde6) |
Adapt Weights | 85.9 | 84.5 | 94.6 | Google / Baidu(dy1k) |
PosPool | 85.9 | 84.6 | 94.6 | Google / Baidu(r2tr) |
PosPool* | 86.2 | 84.8 | 94.8 | Google / Baidu(27ie) |