forked from jakeywu/ocr_torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
194 lines (171 loc) · 7.78 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import cv2
import torch
import json
import argparse
import time
import copy
import codecs
from functools import partial
import numpy as np
import onnx
from config.load_conf import ReadConfig
import onnxruntime as rt
from nets import build_model
from postprocess import build_post_process
from data_loader.img_aug import *
def main(params):
model = build_model(params["model"])
post_process = build_post_process(params["post_process"])
pt = Predictor(model, post_process, params)
pt.predict()
class Predictor(object):
def __init__(self, model, post_process, params):
self._model = model
self._conf = params["global"]
self.image_dir_or_path = params["dataset"]["image_dir_or_path"]
self._transforms = self._transforms_func_lst(params["dataset"]["transforms"])
self._post_process = post_process
self._image_list = self._read_images()
if not os.path.exists(self._conf["res_save_dir"]):
os.makedirs(self._conf["res_save_dir"])
if self._conf["use_infer_model"]:
self.sess = self._convert_train2infer()
else:
self.sess = self._init_pth_model()
@staticmethod
def _transforms_func_lst(config):
func_lst = []
for _transform in config:
operator = list(_transform.keys())[0]
params = dict() if _transform[operator] is None else _transform[operator]
func_name = eval(operator)(**params)
func_lst.append(func_name)
return func_lst
def _convert_train2infer(self):
if os.path.exists(self._conf["infer_model_path"]):
return rt.InferenceSession(self._conf["infer_model_path"])
if not os.path.exists(self._conf["train_model_path"]):
raise Exception("model_det {} not exists".format(self._conf["train_model_path"]))
ckpt = torch.load(self._conf["train_model_path"], map_location=torch.device('cpu'))["state_dict"]
self._model.load_state_dict(ckpt)
self._model.eval()
if self._conf["yml_type"] == "DET":
x = torch.randn(1, 3, 224, 224, requires_grad=True)
dynamic_axes = {
"input": {0: "batch_size", 2: "height", 3: "width"},
"output": {0: "batch_size"}
}
else:
x = torch.randn(1, 3, 32, 320, requires_grad=True)
dynamic_axes = {
"input": {0: "batch_size", 3: "width"},
"output": {0: "batch_size"}
}
torch.onnx.export(
model=self._model,
args=x,
f=self._conf["infer_model_path"],
export_params=True,
opset_version=11,
do_constant_folding=True, # 是否执行常量折叠优化
input_names=["input"], # 输入名
output_names=["output"], # 输出名
dynamic_axes=dynamic_axes
)
try:
onnx_model = onnx.load(self._conf["infer_model_path"])
onnx.checker.check_model(onnx_model)
except Exception as e:
raise e
return rt.InferenceSession(self._conf["infer_model_path"])
def _read_images(self):
imgs_lists = []
if self.image_dir_or_path is None or not os.path.exists(self.image_dir_or_path):
raise Exception("not found any img file in {}".format(self.image_dir_or_path))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'}
if os.path.isfile(self.image_dir_or_path) and \
os.path.splitext(self.image_dir_or_path)[-1][1:].lower() in img_end:
imgs_lists.append(self.image_dir_or_path)
elif os.path.isdir(self.image_dir_or_path):
for single_file in os.listdir(self.image_dir_or_path):
file_path = os.path.join(self.image_dir_or_path, single_file)
if os.path.isfile(file_path) and os.path.splitext(file_path)[-1][1:].lower() in img_end:
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(self.image_dir_or_path))
return imgs_lists
def _init_pth_model(self):
if not self._conf["train_model_path"]:
return self._model
if not os.path.exists(self._conf["train_model_path"]):
print("pth path {} is not exists".format(self._conf["train_model_path"]))
raise
try:
checkpoint = torch.load(self._conf["train_model_path"], map_location="cpu")
self._model.load_state_dict(checkpoint["state_dict"], strict=False)
except Exception:
print("model_det init failed")
raise
return self._model
def predict(self):
self._model.eval()
result = []
for image_path in self._image_list:
image = cv2.imread(image_path, cv2.IMREAD_COLOR) # 默认BGR CHANNEL_LAST
if image is None:
print("reading image_path: {} failed".format(image_path))
continue
data = {"image": image}
for _transform in self._transforms:
data = _transform(data)
for key, val in data.items():
data[key] = np.expand_dims(val, axis=0)
start_time = time.time()
if self._conf["use_infer_model"]:
out = self.sess.run(["output"], {"input": data["image"]})[0]
preds = torch.from_numpy(out)
else:
images = torch.from_numpy(data["image"])
preds = self._model(images)
print("image: {} \texpend time: {:.4f}".format(image_path, time.time() - start_time))
post_result = self._post_process(preds, data)
dt_boxes_json = dict()
dt_boxes_json["file_name"] = image_path
if self._conf["yml_type"] == "DET":
dt_boxes_json["bbox"] = post_result[0][0].tolist()
dt_boxes_json["score"] = post_result[1][0].tolist()
self._draw_det_res(image, dt_boxes_json, os.path.basename(image_path))
else:
dt_boxes_json["text"] = post_result[0][0]
dt_boxes_json["score"] = post_result[0][1]
result.append(dt_boxes_json)
with codecs.open(os.path.join(self._conf["res_save_dir"], "result.txt"), "a", "utf8") as f:
for res in result:
f.write(json.dumps(res, ensure_ascii=False)+"\n")
def _draw_det_res(self, image, dt_boxes_json, img_name):
cus_line = partial(cv2.line, color=(255, 255, 0), thickness=1)
if len(dt_boxes_json) > 0:
new_im = copy.copy(image)
for i, box in enumerate(dt_boxes_json["bbox"]):
score = dt_boxes_json["score"][i]
cus_line(new_im, (box[0][0], box[0][1]), (box[1][0], box[1][1]))
cus_line(new_im, (box[1][0], box[1][1]), (box[2][0], box[2][1]))
cus_line(new_im, (box[2][0], box[2][1]), (box[3][0], box[3][1]))
cus_line(new_im, (box[3][0], box[3][1]), (box[0][0], box[0][1]))
cv2.putText(
new_im,
"{:.3f}".format(score),
(box[0][0], box[0][1]),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.3,
color=(0, 0, 255))
save_path = os.path.join(self._conf["res_save_dir"], os.path.basename(img_name))
cv2.imwrite(save_path, new_im)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", default="./config/predict/det.yml", help="配置文件路径")
det_conf_path = parser.parse_args().config
cus_params = ReadConfig(det_conf_path).base_conf
print("预测相关参数:\n{}".format(json.dumps(cus_params, indent=2, ensure_ascii=False)))
main(cus_params)