-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
998 lines (807 loc) · 36.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
import os
import cv2
import time
import tqdm
import numpy as np
import dearpygui.dearpygui as dpg
import torch
import torch.nn.functional as F
import torchvision.utils as vutils
from einops import rearrange, repeat
import imageio
import rembg
from cam_utils import orbit_camera, OrbitCamera
from gs_renderer_4d import Renderer, MiniCam
from dataset_4d import SparseDataset
def save_image_to_local(image_tensor, file_path):
# Ensure the image tensor is in the range [0, 1]
image_tensor = image_tensor.clamp(0, 1)
# Save the image tensor to the specified file path
vutils.save_image(image_tensor, file_path)
class GUI:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.gui = opt.gui # enable gui
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.mode = "image"
self.seed = "random"
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # update buffer_image
# models
self.device = torch.device("cuda")
self.bg_remover = None
self.guidance_sd = None
self.guidance_zero123 = None
self.enable_sd = False
self.enable_zero123 = False
# renderer
self.renderer = Renderer(sh_degree=self.opt.sh_degree)
self.gaussain_scale_factor = 1
# input image
self.input_img = None
self.input_mask = None
self.input_img_torch = None
self.input_mask_torch = None
self.overlay_input_img = False
self.overlay_input_img_ratio = 0.5
#self.use_depth = opt.use_depth
# input text
self.prompt = ""
self.negative_prompt = ""
# training stuff
self.training = False
self.optimizer = None
self.step = 0
self.t = 0
self.time = 0
self.train_steps = 1 # steps per rendering loop
self.init = True
self.stage = 'coarse'
self.path = self.opt.path
self.save_step = self.opt.save_step
if self.opt.size is not None:
self.size = self.opt.size
else:
self.size = len(os.listdir(os.path.join(self.path,'ref')))
self.frames=self.size
self.dataset = SparseDataset(self.opt, self.size, H=self.H, W=self.W, device=self.device)
self.dataloader =self.dataset.dataloader()
self.iter = iter(self.dataloader)
self.ref_view_batch, self.input_mask_batch,self.zero123_view_batch,self.zero123_masks_batch = next(self.iter)
self.input_img_torch_batch,self.input_mask_torch_batch,self.zero123plus_imgs_torch_batch,self.zero123plus_masks_torch_batch=[],[],[],[]
# load input data from cmdline
if self.opt.input is not None:
self.load_input(self.opt.input)
# override prompt from cmdline
if self.opt.prompt is not None:
self.prompt = self.opt.prompt
# override if provide a checkpoint
self.renderer.initialize(num_pts=self.opt.num_pts)
self.point_nums = []
if self.gui:
dpg.create_context()
self.register_dpg()
self.test_step()
def __del__(self):
if self.gui:
dpg.destroy_context()
def seed_everything(self):
try:
seed = int(self.seed)
except:
seed = np.random.randint(0, 1000000)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
self.last_seed = seed
def prepare_image(self,idx):
# input image
if self.input_img is not None:
self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.zero123plus_imgs_torch=[]
self.zero123plus_masks_torch=[]
# input image
if self.input_imgs is not None:
for i in np.arange(6):
#print(idx,i)
self.input_img2_torch=(torch.from_numpy(self.input_imgs[i]).permute(2, 0, 1).unsqueeze(0).to(self.device))
self.zero123plus_imgs_torch.append(F.interpolate(self.input_img2_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False))
self.input_mask2_torch=torch.from_numpy(self.input_masks[i]).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.zero123plus_masks_torch.append(F.interpolate(self.input_mask2_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False))
self.input_img_torch_batch.append(self.input_img_torch)
self.input_mask_torch_batch.append(self.input_mask_torch)
self.zero123plus_imgs_torch_batch.append(self.zero123plus_imgs_torch)
self.zero123plus_masks_torch_batch.append(self.zero123plus_masks_torch)
# prepare embeddings
with torch.no_grad():
self.guidance_zero123.get_img_embeds(self.input_img_torch, self.zero123plus_imgs_torch)
def prepare_train(self):
self.step = 0
self.end_step = self.save_step+1
## given a load_path, load corresponding model
if self.opt.load_path is not None:
if self.opt.load_step is not None:
self.step = self.opt.load_step
else:
#default loading save_step ply
self.step = self.save_step
auto_path = os.path.join(self.opt.outdir,self.opt.load_path + str(self.step))
ply_path = os.path.join(auto_path,'model.ply')
self.renderer.gaussians.load_model(auto_path)
self.renderer.gaussians.load_ply(ply_path)
self.end_step =self.step+self.end_step
## setup training
self.renderer.gaussians.training_setup(self.opt)
## do not do progressive sh-level
self.renderer.gaussians.active_sh_degree = self.renderer.gaussians.max_sh_degree
self.optimizer = self.renderer.gaussians.optimizer
# default camera
pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
self.fixed_cam = MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
)
self.set_fix_cam()
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
print(f"[INFO] loading zero123...")
from guidance.zero123_4d_utils import Zero123
self.guidance_zero123 = Zero123(self.device)
print(f"[INFO] loaded zero123!")
## load multiview reference images
for i in np.arange(len(self.ref_view_batch)):
self.input_img = self.ref_view_batch[i]
self.input_mask = self.input_mask_batch[i]
self.input_imgs = self.zero123_view_batch[i]
self.input_masks = self.zero123_masks_batch[i]
self.prepare_image(i)
def train_step(self):
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
torch.autograd.set_detect_anomaly(True)
for _ in range(self.train_steps):
if self.step<self.opt.init_steps:
self.init = True
self.stage = 'coarse'
else:
self.init = False
self.stage = 'fine'
if self.step == self.end_step:
exit()
## save model
if self.step == self.save_step:
auto_path = os.path.join(self.opt.outdir,self.opt.save_path + str(self.step))
os.makedirs(auto_path,exist_ok=True)
ply_path = os.path.join(auto_path,'model.ply')
self.renderer.gaussians.save_ply(ply_path)
self.renderer.gaussians.save_deformation(auto_path)
if self.step>self.opt.position_lr_max_steps:
self.opt.position_lr_max_steps = self.opt.position_lr_max_steps2
self.step += 1
step_ratio = min(1, self.step / self.opt.iters)
viewspace_point_tensor_list = []
radii_list = []
visibility_filter_list = []
# update lr
self.renderer.gaussians.update_learning_rate(self.step)
self.guidance_zero123.update_step(0,self.step)
loss = 0
if self.step%self.opt.valid_interval == 0:
self.save_renderings( 0, 0, 2 ,'front')
self.save_renderings( 180, 0, 2 ,'back')
render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
for _ in np.arange(self.opt.batch_size):
#sample time
if self.init:
self.t = self.frames//2
self.time = self.t/self.frames
else:
self.t = np.random.randint(0,self.frames)
self.time = self.t/self.frames
self.input_img_torch = self.input_img_torch_batch[self.t]
self.input_mask_torch = self.input_mask_torch_batch[self.t]
self.zero123plus_imgs_torch = self.zero123plus_imgs_torch_batch[self.t]
self.zero123plus_masks_torch = self.zero123plus_masks_torch_batch[self.t]
## need to do rgb loss in the batch
cur_cam = self.fixed_cam
cur_cam.time=self.time
out = self.renderer.render(cur_cam,stage=self.stage)
viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
# rgb loss
image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
image_loss =step_ratio* 20000* F.mse_loss(image, self.input_img_torch)
loss = loss + image_loss
alpha = out["alpha"].unsqueeze(0)
alpha_loss = step_ratio* 5000* F.mse_loss(alpha, self.input_mask_torch)
loss = loss + alpha_loss
images = []
poses = []
vers_plus, hors_plus, radii_plus = [], [], []
self.guidance_zero123.update_step(1,self.step)
# render random view
ver = np.random.randint(min_ver, max_ver)
hor = np.random.randint(-180, 180)
radius = 0
pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)
poses.append(pose)
cur_cam = MiniCam(
pose,
render_resolution,
render_resolution,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
)
cur_cam.time=self.time
if hor<30 and hor>-30 or np.random.rand()>0.4:
idx=None
vers_plus.append(torch.tensor(ver,device=self.device).unsqueeze(dim=0))
hors_plus.append(torch.tensor(hor,device=self.device).unsqueeze(dim=0))
radii_plus.append(torch.tensor(radius,device=self.device).unsqueeze(dim=0))
elif hor>0:
idx=hor//60
vers_plus.append(torch.tensor(ver-self.fixed_elevation[idx],device=self.device).unsqueeze(dim=0))
hors_plus.append(torch.tensor(hor-self.fixed_azimuth[idx],device=self.device).unsqueeze(dim=0))
radii_plus.append(torch.tensor(radius,device=self.device).unsqueeze(dim=0))
elif hor<0:
idx = (360+hor)//60
vers_plus.append(torch.tensor(ver-self.fixed_elevation[idx],device=self.device).unsqueeze(dim=0))
hors_plus.append(torch.tensor(hor-self.fixed_azimuth[idx],device=self.device).unsqueeze(dim=0))
radii_plus.append(torch.tensor(radius,device=self.device).unsqueeze(dim=0))
bg_color = torch.tensor([1, 1, 1] if np.random.rand() > self.opt.invert_bg_prob else [0, 0, 0], dtype=torch.float32, device="cuda")
out = self.renderer.render(cur_cam, bg_color=bg_color,stage=self.stage)
viewspace_point_tensor, visibility_filter, radii_rendering = out["viewspace_points"], out["visibility_filter"], out["radii"]
radii_list.append(radii_rendering.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
image = out["image"].unsqueeze(0)# [1, 3, H, W] in [0, 1]
images.append(image)
images_render = torch.cat(images, dim=0)
#poses = torch.from_numpy(np.stack(poses, axis=0)).to(self.device)
vers_batch = torch.cat(vers_plus, dim=0).cpu().numpy()
hors_batch = torch.cat(hors_plus, dim=0).cpu().numpy()
radii_batch = torch.cat(radii_plus, dim=0).cpu().numpy()
# guidance loss
# as we have different reference views, so each time we only pass 1 image into zero123 for guidance
zero123_loss = self.opt.lambda_zero123 * self.guidance_zero123.train_step(images_render, vers_batch, hors_batch, radii_batch, step_ratio,idx=idx,t = self.t)
loss = loss + zero123_loss
# tv loss
scales = out['scales']
tv_loss = self.renderer.gaussians.compute_regulation(self.opt.time_smoothness_weight, self.opt.plane_tv_weight, self.opt.l1_time_planes)
loss += self.opt.lambda_tv * tv_loss
# scale loss from physgaussian
r = self.opt.scale_loss_ratio
scale_loss = (torch.mean(torch.maximum(torch.max(scales,dim=1).values/ \
(torch.min(scales,dim=1).values+1e-8),\
torch.ones_like(torch.max(scales,dim=1).values)*r))-r) * scales.shape[0]
loss += scale_loss
# optimize step
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
for idx in range(0, len(viewspace_point_tensor_list)):
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
radii = torch.cat(radii_list,0).max(dim=0).values
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
self.renderer.gaussians.add_densification_stats(viewspace_point_tensor_grad, visibility_filter)
if self.step % self.opt.densification_interval == 1 :
self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold_percent, min_opacity=0.01, extent=1, max_screen_size=2)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.need_update = True
if self.gui:
dpg.set_value("_log_train_time", f"{t:.4f}ms")
dpg.set_value(
"_log_train_log",
f"step = {self.step: 5d} (+{self.train_steps: 2d})\n loss = {loss.item():.4f}\nzero123_loss = {zero123_loss.item():.4f}image_loss ={image_loss.item():.4f}\nloss_alpha = {alpha_loss.item():.4f} scale_loss:{scale_loss.item():.4f} ",
)
def set_fix_cam(self):
self.fixed_cam_plus=[]
self.fixed_elevation = []
self.fixed_azimuth = []
pose = orbit_camera(self.opt.elevation-30,30 , self.opt.radius)
self.fixed_elevation.append(-30)
self.fixed_azimuth.append(30)
self.fixed_cam_plus.append(MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
))
pose = orbit_camera(self.opt.elevation+20, 90, self.opt.radius)
self.fixed_elevation.append(20)
self.fixed_azimuth.append(90)
self.fixed_cam_plus.append(MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
))
pose = orbit_camera(self.opt.elevation-30, 150, self.opt.radius)
self.fixed_elevation.append(-30)
self.fixed_azimuth.append(150)
self.fixed_cam_plus.append(MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
))
pose = orbit_camera(self.opt.elevation+20, 210, self.opt.radius)
self.fixed_elevation.append(+20)
self.fixed_azimuth.append(210)
self.fixed_cam_plus.append(MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
))
pose = orbit_camera(self.opt.elevation-30, 270, self.opt.radius)
self.fixed_elevation.append(-30)
self.fixed_azimuth.append(270)
self.fixed_cam_plus.append(MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
))
pose = orbit_camera(self.opt.elevation+20, 330, self.opt.radius)
self.fixed_elevation.append(20)
self.fixed_azimuth.append(330)
self.fixed_cam_plus.append(MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
))
@torch.no_grad()
def test_step(self):
# ignore if no need to update
if not self.need_update:
return
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
# should update image
if self.need_update:
# render image
cur_cam = MiniCam(
self.cam.pose,
self.W,
self.H,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
time=self.time
)
#print(cur_cam.time)
out = self.renderer.render(cur_cam, self.gaussain_scale_factor,stage=self.stage)
buffer_image = out[self.mode] # [3, H, W]
if self.mode in ['depth', 'alpha']:
buffer_image = buffer_image.repeat(3, 1, 1)
if self.mode == 'depth':
buffer_image = (buffer_image - buffer_image.min()) / (buffer_image.max() - buffer_image.min() + 1e-20)
buffer_image = F.interpolate(
buffer_image.unsqueeze(0),
size=(self.H, self.W),
mode="bilinear",
align_corners=False,
).squeeze(0)
self.buffer_image = (
buffer_image.permute(1, 2, 0)
.contiguous()
.clamp(0, 1)
.contiguous()
.detach()
.cpu()
.numpy()
)
# display input_image
if self.overlay_input_img and self.input_img is not None:
self.buffer_image = (
self.buffer_image * (1 - self.overlay_input_img_ratio)
+ self.input_img * self.overlay_input_img_ratio
)
self.need_update = False
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
if self.gui:
dpg.set_value("_log_infer_time", f"{t:.4f}ms ({int(1000/t)} FPS)")
dpg.set_value(
"_texture", self.buffer_image
) # buffer must be contiguous, else seg fault!
def load_input(self, file):
# load image
pass
# load image
@torch.no_grad()
def save_renderings(self, elev=0, azim=0, radius=2, name='front'):
images=[]
for i in np.arange(self.frames):
pose = orbit_camera(elev, azim, radius)
cam = MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
)
cam.time=float(i/self.frames)
out = self.renderer.render(cam,stage=self.stage)
image = out["image"].unsqueeze(0)
images.append(image)
os.makedirs(f'./valid/{self.opt.save_path}/{self.step}_{name}',exist_ok=True)
save_image_to_local(image[0].detach(),f'./valid/{self.opt.save_path}/{self.step}_{name}/{str(i).zfill(2)}.jpg')
samples=torch.cat(images,dim=0)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255).clamp(0,255).detach()
.cpu()
.numpy()
.astype(np.uint8)
)
video_path = f'./valid/{self.opt.save_path}/{self.step}_{name}/video.mp4'
imageio.mimwrite(video_path, vid)
@torch.no_grad()
def save_model(self, mode='geo', texture_size=1024):
os.makedirs(self.opt.outdir, exist_ok=True)
if mode == 'geo':
path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
self.renderer.gaussians.save_ply(path)
elif mode == 'geo+tex':
path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
self.renderer.gaussians.save_ply(path)
else:
path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
self.renderer.gaussians.save_ply(path)
print(f"[INFO] save model to {path}.")
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(
self.W,
self.H,
self.buffer_image,
format=dpg.mvFormat_Float_rgb,
tag="_texture",
)
### register window
# the rendered image, as the primary window
with dpg.window(
tag="_primary_window",
width=self.W,
height=self.H,
pos=[0, 0],
no_move=True,
no_title_bar=True,
no_scrollbar=True,
):
# add the texture
dpg.add_image("_texture")
# dpg.set_primary_window("_primary_window", True)
# control window
with dpg.window(
label="Control",
tag="_control_window",
width=600,
height=self.H,
pos=[self.W, 0],
no_move=True,
no_title_bar=True,
):
# button theme
with dpg.theme() as theme_button:
with dpg.theme_component(dpg.mvButton):
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
# timer stuff
with dpg.group(horizontal=True):
dpg.add_text("Infer time: ")
dpg.add_text("no data", tag="_log_infer_time")
def callback_setattr(sender, app_data, user_data):
setattr(self, user_data, app_data)
# init stuff
with dpg.collapsing_header(label="Initialize", default_open=True):
# seed stuff
def callback_set_seed(sender, app_data):
self.seed = app_data
self.seed_everything()
dpg.add_input_text(
label="seed",
default_value=self.seed,
on_enter=True,
callback=callback_set_seed,
)
# input stuff
def callback_select_input(sender, app_data):
# only one item
for k, v in app_data["selections"].items():
dpg.set_value("_log_input", k)
self.load_input(v)
self.need_update = True
with dpg.file_dialog(
directory_selector=False,
show=False,
callback=callback_select_input,
file_count=1,
tag="file_dialog_tag",
width=700,
height=400,
):
dpg.add_file_extension("Images{.jpg,.jpeg,.png}")
with dpg.group(horizontal=True):
dpg.add_button(
label="input",
callback=lambda: dpg.show_item("file_dialog_tag"),
)
dpg.add_text("", tag="_log_input")
# overlay stuff
with dpg.group(horizontal=True):
def callback_toggle_overlay_input_img(sender, app_data):
self.overlay_input_img = not self.overlay_input_img
self.need_update = True
dpg.add_checkbox(
label="overlay image",
default_value=self.overlay_input_img,
callback=callback_toggle_overlay_input_img,
)
def callback_set_overlay_input_img_ratio(sender, app_data):
self.overlay_input_img_ratio = app_data
self.need_update = True
dpg.add_slider_float(
label="ratio",
min_value=0,
max_value=1,
format="%.1f",
default_value=self.overlay_input_img_ratio,
callback=callback_set_overlay_input_img_ratio,
)
# prompt stuff
dpg.add_input_text(
label="prompt",
default_value=self.prompt,
callback=callback_setattr,
user_data="prompt",
)
dpg.add_input_text(
label="negative",
default_value=self.negative_prompt,
callback=callback_setattr,
user_data="negative_prompt",
)
# save current model
with dpg.group(horizontal=True):
dpg.add_text("Save: ")
def callback_save(sender, app_data, user_data):
self.save_model(mode=user_data)
dpg.add_button(
label="model",
tag="_button_save_model",
callback=callback_save,
user_data='model',
)
dpg.bind_item_theme("_button_save_model", theme_button)
dpg.add_button(
label="geo",
tag="_button_save_mesh",
callback=callback_save,
user_data='geo',
)
dpg.bind_item_theme("_button_save_mesh", theme_button)
dpg.add_button(
label="geo+tex",
tag="_button_save_mesh_with_tex",
callback=callback_save,
user_data='geo+tex',
)
dpg.bind_item_theme("_button_save_mesh_with_tex", theme_button)
dpg.add_input_text(
label="",
default_value=self.opt.save_path,
callback=callback_setattr,
user_data="save_path",
)
# training stuff
with dpg.collapsing_header(label="Train", default_open=True):
# lr and train button
with dpg.group(horizontal=True):
dpg.add_text("Train: ")
def callback_train(sender, app_data):
if self.training:
self.training = False
dpg.configure_item("_button_train", label="start")
else:
self.prepare_train()
self.training = True
dpg.configure_item("_button_train", label="stop")
# dpg.add_button(
# label="init", tag="_button_init", callback=self.prepare_train
# )
# dpg.bind_item_theme("_button_init", theme_button)
dpg.add_button(
label="start", tag="_button_train", callback=callback_train
)
dpg.bind_item_theme("_button_train", theme_button)
with dpg.group(horizontal=True):
dpg.add_text("", tag="_log_train_time")
dpg.add_text("", tag="_log_train_log")
# rendering options
with dpg.collapsing_header(label="Rendering", default_open=True):
# mode combo
def callback_change_mode(sender, app_data):
self.mode = app_data
self.need_update = True
dpg.add_combo(
("image", "depth", "alpha"),
label="mode",
default_value=self.mode,
callback=callback_change_mode,
)
# fov slider
def callback_set_fovy(sender, app_data):
self.cam.fovy = np.deg2rad(app_data)
self.need_update = True
dpg.add_slider_int(
label="FoV (vertical)",
min_value=1,
max_value=120,
format="%d deg",
default_value=np.rad2deg(self.cam.fovy),
callback=callback_set_fovy,
)
def callback_set_gaussain_scale(sender, app_data):
self.gaussain_scale_factor = app_data
self.need_update = True
dpg.add_slider_float(
label="gaussain scale",
min_value=0,
max_value=1,
format="%.2f",
default_value=self.gaussain_scale_factor,
callback=callback_set_gaussain_scale,
)
### register camera handler
def callback_camera_drag_rotate_or_draw_mask(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
def callback_set_mouse_loc(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
# just the pixel coordinate in image
self.mouse_loc = np.array(app_data)
with dpg.handler_registry():
# for camera moving
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Left,
callback=callback_camera_drag_rotate_or_draw_mask,
)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
)
dpg.create_viewport(
title="Gaussian3D",
width=self.W + 600,
height=self.H + (45 if os.name == "nt" else 0),
resizable=False,
)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
### register a larger font
# get it from: https://github.com/lxgw/LxgwWenKai/releases/download/v1.300/LXGWWenKai-Regular.ttf
if os.path.exists("LXGWWenKai-Regular.ttf"):
with dpg.font_registry():
with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font:
dpg.bind_font(default_font)
# dpg.show_metrics()
dpg.show_viewport()
def render(self):
assert self.gui
while dpg.is_dearpygui_running():
# update texture every frame
if self.training:
self.train_step()
self.test_step()
dpg.render_dearpygui_frame()
# no gui mode
def train(self, iters=500):
if iters > 0:
self.prepare_train()
for i in tqdm.trange(iters):
self.train_step()
# do a last prune
#self.renderer.gaussians.prune(min_opacity=0.01, extent=1, max_screen_size=1)
# save
self.save_model(mode='model')
self.save_model(mode='geo+tex')
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to the yaml config file")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
gui = GUI(opt)
if opt.gui:
gui.render()
else:
gui.train(opt.save_step+1)