forked from RubixML/ML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mkdocs.yml
331 lines (320 loc) · 13.8 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
site_name: 'Rubix ML'
theme:
name: material
logo: images/app-icon-medium.png
favicon: images/app-icon-small.png
icon:
repo: fontawesome/brands/github
features:
- navigation.tabs
nav:
- Home: https://rubixml.com
- Getting Started:
- Welcome: index.md
- What is Machine Learning?: what-is-machine-learning.md
- Installation: installation.md
- Basic Introduction: basic-introduction.md
- User Guide:
- Representing Your Data: representing-your-data.md
- Extracting Data: extracting-data.md
- Preprocessing: preprocessing.md
- Choosing an Estimator: choosing-an-estimator.md
- Training: training.md
- Inference: inference.md
- Cross-validation: cross-validation.md
- Hyper-parameter Tuning: hyper-parameter-tuning.md
- Model Persistence: model-persistence.md
- API Reference:
- Fundamental Interfaces:
- Estimator: estimator.md
- Learner: learner.md
- Online: online.md
- Parallel: parallel.md
- Persistable: persistable.md
- Probabilistic: probabilistic.md
- Ranks Features: ranks-features.md
- Scoring: scoring.md
- Verbose: verbose.md
- Wrapper: wrapper.md
- Extractors:
- API Reference: extractors/api.md
- Column Picker: extractors/column-picker.md
- CSV: extractors/csv.md
- JSON: extractors/json.md
- NDJSON: extractors/ndjson.md
- Dataset Objects:
- API Reference: datasets/api.md
- Generators:
- API Reference: datasets/generators/api.md
- Agglomerate: datasets/generators/agglomerate.md
- Blob: datasets/generators/blob.md
- Circle: datasets/generators/circle.md
- Half Moon: datasets/generators/half-moon.md
- Hyperplane: datasets/generators/hyperplane.md
- Swiss Roll: datasets/generators/swiss-roll.md
- Labeled: datasets/labeled.md
- Unlabeled: datasets/unlabeled.md
- Classifiers:
- AdaBoost: classifiers/adaboost.md
- Classification Tree: classifiers/classification-tree.md
- Dummy Classifier: classifiers/dummy-classifier.md
- Extra Tree Classifier: classifiers/extra-tree-classifier.md
- Gaussian Naive Bayes: classifiers/gaussian-naive-bayes.md
- K-d Neighbors: classifiers/kd-neighbors.md
- K Nearest Neighbors: classifiers/k-nearest-neighbors.md
- Logistic Regression: classifiers/logistic-regression.md
- Multilayer Perceptron: classifiers/multilayer-perceptron.md
- Naive Bayes: classifiers/naive-bayes.md
- Radius Neighbors: classifiers/radius-neighbors.md
- Random Forest: classifiers/random-forest.md
- Softmax Classifier: classifiers/softmax-classifier.md
- SVC: classifiers/svc.md
- Regressors:
- Adaline: regressors/adaline.md
- Dummy Regressor: regressors/dummy-regressor.md
- Extra Tree Regressor: regressors/extra-tree-regressor.md
- Gradient Boost: regressors/gradient-boost.md
- K-d Neighbors Regressor: regressors/kd-neighbors-regressor.md
- KNN Regressor: regressors/knn-regressor.md
- MLP Regressor: regressors/mlp-regressor.md
- Radius Neighbors Regressor: regressors/radius-neighbors-regressor.md
- Regression Tree: regressors/regression-tree.md
- Ridge: regressors/ridge.md
- SVR: regressors/svr.md
- Clusterers:
- Seeders:
- K-MC2: clusterers/seeders/k-mc2.md
- Plus Plus: clusterers/seeders/plus-plus.md
- Random: clusterers/seeders/random.md
- DBSCAN: clusterers/dbscan.md
- Fuzzy C Means: clusterers/fuzzy-c-means.md
- Gaussian Mixture: clusterers/gaussian-mixture.md
- K Means: clusterers/k-means.md
- Mean Shift: clusterers/mean-shift.md
- Anomaly Detectors:
- Gaussian MLE: anomaly-detectors/gaussian-mle.md
- Isolation Forest: anomaly-detectors/isolation-forest.md
- Loda: anomaly-detectors/loda.md
- Local Outlier Factor: anomaly-detectors/local-outlier-factor.md
- One Class SVM: anomaly-detectors/one-class-svm.md
- Robust Z-Score: anomaly-detectors/robust-z-score.md
- Meta Estimators:
- Bootstrap Aggregator: bootstrap-aggregator.md
- Committee Machine: committee-machine.md
- Grid Search: grid-search.md
- Persistent Model: persistent-model.md
- Pipeline: pipeline.md
- Embedders:
- API Reference: embedders/api.md
- t-SNE: embedders/t-sne.md
- Transformers:
- API Reference: transformers/api.md
- Standardization and Normalization:
- L1 Normalizer: transformers/l1-normalizer.md
- L2 Normalizer: transformers/l2-normalizer.md
- Max Absolute Scaler: transformers/max-absolute-scaler.md
- Min Max Normalizer: transformers/min-max-normalizer.md
- Robust Standardizer: transformers/robust-standardizer.md
- Z Scale Standardizer: transformers/z-scale-standardizer.md
- Dimensionality Reduction:
- Dense Random Projector: transformers/dense-random-projector.md
- Gaussian Random Projector: transformers/gaussian-random-projector.md
- Linear Discriminant Analysis: transformers/linear-discriminant-analysis.md
- Principal Component Analysis: transformers/principal-component-analysis.md
- Sparse Random Projector: transformers/sparse-random-projector.md
- Truncated SVD: transformers/truncated-svd.md
- Feature Conversion:
- Interval Discretizer: transformers/interval-discretizer.md
- One Hot Encoder: transformers/one-hot-encoder.md
- Numeric String Converter: transformers/numeric-string-converter.md
- Boolean Converter: transformers/boolean-converter.md
- Feature Selection:
- K Best Feature Selector: transformers/k-best-feature-selector.md
- Recursive Feature Eliminator: transformers/recursive-feature-eliminator.md
- Imputation:
- KNN Imputer: transformers/knn-imputer.md
- Missing Data Imputer: transformers/missing-data-imputer.md
- Random Hot Deck Imputer: transformers/random-hot-deck-imputer.md
- Image Transformers:
- Image Resizer: transformers/image-resizer.md
- Image Vectorizer: transformers/image-vectorizer.md
- Text Transformers:
- HTML Stripper: transformers/html-stripper.md
- Regex Filter: transformers/regex-filter.md
- Text Normalizer: transformers/text-normalizer.md
- Multibyte Text Normalizer: transformers/multibyte-text-normalizer.md
- Stop Word Filter: transformers/stop-word-filter.md
- TF-IDF Transformer: transformers/tf-idf-transformer.md
- Whitespace Trimmer: transformers/whitespace-trimmer.md
- Word Count Vectorizer: transformers/word-count-vectorizer.md
- Other:
- Polynomial Expander: transformers/polynomial-expander.md
- Neural Network:
- Hidden Layers:
- Activation: neural-network/hidden-layers/activation.md
- Batch Norm: neural-network/hidden-layers/batch-norm.md
- Dense: neural-network/hidden-layers/dense.md
- Dropout: neural-network/hidden-layers/dropout.md
- Noise: neural-network/hidden-layers/noise.md
- PReLU: neural-network/hidden-layers/prelu.md
- Activation Functions:
- ELU: neural-network/activation-functions/elu.md
- Hyperbolic Tangent: neural-network/activation-functions/hyperbolic-tangent.md
- Leaky ReLU: neural-network/activation-functions/leaky-relu.md
- ReLU: neural-network/activation-functions/relu.md
- SELU: neural-network/activation-functions/selu.md
- Sigmoid: neural-network/activation-functions/sigmoid.md
- Softmax: neural-network/activation-functions/softmax.md
- Soft Plus: neural-network/activation-functions/soft-plus.md
- Soft Sign: neural-network/activation-functions/softsign.md
- Thresholded ReLU: neural-network/activation-functions/thresholded-relu.md
- Cost Functions:
- Cross Entropy: neural-network/cost-functions/cross-entropy.md
- Huber Loss: neural-network/cost-functions/huber-loss.md
- Least Squares: neural-network/cost-functions/least-squares.md
- Relative Entropy: neural-network/cost-functions/relative-entropy.md
- Initializers:
- Constant: neural-network/initializers/constant.md
- He: neural-network/initializers/he.md
- LeCun: neural-network/initializers/lecun.md
- Normal: neural-network/initializers/normal.md
- Uniform: neural-network/initializers/uniform.md
- Xavier 1: neural-network/initializers/xavier-1.md
- Xavier 2: neural-network/initializers/xavier-2.md
- Optimizers:
- AdaGrad: neural-network/optimizers/adagrad.md
- Adam: neural-network/optimizers/adam.md
- AdaMax: neural-network/optimizers/adamax.md
- Cyclical: neural-network/optimizers/cyclical.md
- Momentum: neural-network/optimizers/momentum.md
- RMS Prop: neural-network/optimizers/rms-prop.md
- Step Decay: neural-network/optimizers/step-decay.md
- Stochastic: neural-network/optimizers/stochastic.md
- Graph:
- Trees:
- Ball Tree: graph/trees/ball-tree.md
- K-d Tree: graph/trees/k-d-tree.md
- Kernels:
- Distance:
- Canberra: kernels/distance/canberra.md
- Cosine: kernels/distance/cosine.md
- Diagonal: kernels/distance/diagonal.md
- Euclidean: kernels/distance/euclidean.md
- Hamming: kernels/distance/hamming.md
- Jaccard: kernels/distance/jaccard.md
- Manhattan: kernels/distance/manhattan.md
- Minkowski: kernels/distance/minkowski.md
- Safe Euclidean: kernels/distance/safe-euclidean.md
- SVM:
- Linear: kernels/svm/linear.md
- Polynomial: kernels/svm/polynomial.md
- RBF: kernels/svm/rbf.md
- Sigmoidal: kernels/svm/sigmoidal.md
- Cross Validation:
- Metrics:
- API Reference: cross-validation/metrics/api.md
- Accuracy: cross-validation/metrics/accuracy.md
- F Beta: cross-validation/metrics/f-beta.md
- Informedness: cross-validation/metrics/informedness.md
- MCC: cross-validation/metrics/mcc.md
- Mean Absolute Error: cross-validation/metrics/mean-absolute-error.md
- Mean Squared Error: cross-validation/metrics/mean-squared-error.md
- Median Absolute Error: cross-validation/metrics/median-absolute-error.md
- RMSE: cross-validation/metrics/rmse.md
- R Squared: cross-validation/metrics/r-squared.md
- SMAPE: cross-validation/metrics/smape.md
- Completeness: cross-validation/metrics/completeness.md
- Homogeneity: cross-validation/metrics/homogeneity.md
- Rand Index: cross-validation/metrics/rand-index.md
- V Measure: cross-validation/metrics/v-measure.md
- Reports:
- API Reference: cross-validation/reports/api.md
- Aggregate Report: cross-validation/reports/aggregate-report.md
- Confusion Matrix: cross-validation/reports/confusion-matrix.md
- Contingency Table: cross-validation/reports/contingency-table.md
- Error Analysis: cross-validation/reports/error-analysis.md
- Multiclass Breakdown: cross-validation/reports/multiclass-breakdown.md
- Validators:
- API Reference: cross-validation/api.md
- Hold Out: cross-validation/hold-out.md
- K Fold: cross-validation/k-fold.md
- Leave P Out: cross-validation/leave-p-out.md
- Monte Carlo: cross-validation/monte-carlo.md
- Persisters:
- API Reference: persisters/api.md
- Filesystem: persisters/filesystem.md
- Flysystem: persisters/flysystem.md
- Redis DB: persisters/redis-db.md
- Serializers:
- Gzip: persisters/serializers/gzip.md
- Igbinary: persisters/serializers/igbinary.md
- Native: persisters/serializers/native.md
- RBX: persisters/serializers/rbx.md
- Backends:
- Amp: backends/amp.md
- Serial: backends/serial.md
- Other:
- Helpers:
- Params: other/helpers/params.md
- Loggers:
- Screen: other/loggers/screen.md
- Strategies:
- Constant: other/strategies/constant.md
- K Most Frequent: other/strategies/k-most-frequent.md
- Mean: other/strategies/mean.md
- Percentile: other/strategies/percentile.md
- Prior: other/strategies/prior.md
- Wild Guess: other/strategies/wild-guess.md
- Tokenizers:
- K-Skip-N-Gram: other/tokenizers/k-skip-n-gram.md
- N-Gram: other/tokenizers/n-gram.md
- Sentence: other/tokenizers/sentence.md
- Skip Gram: other/tokenizers/skip-gram.md
- Whitespace: other/tokenizers/whitespace.md
- Word: other/tokenizers/word.md
- FAQ: faq.md
extra:
version:
provider: mike
social:
- icon: fontawesome/brands/github
link: https://github.com/RubixML
- icon: fontawesome/brands/telegram
link: https://t.me/RubixML
- icon: fontawesome/brands/twitter
link: https://twitter.com/RubixML
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/groups/8952251/
use_directory_urls: false
plugins:
- search
- git-revision-date
markdown_extensions:
- attr_list
- abbr
- admonition
- pymdownx.highlight:
extend_pygments_lang:
- name: php
lang: php
options:
startinline: true
- pymdownx.superfences
- pymdownx.arithmatex:
generic: true
- toc:
permalink: "#"
- footnotes
google_analytics:
- UA-136137674-1
- auto
extra_javascript:
- https://polyfill.io/v3/polyfill.min.js?features=es6
- https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
- js/custom.js
extra_css:
- css/custom.css
repo_url: https://github.com/RubixML/ML
site_url: https://rubixml.com
site_description: 'A high-level machine learning and deep learning library for the PHP language.'
copyright: '© 2021 Rubix ML'