|
| 1 | +# 🌸 FloraCast: Building a Forecasting Platform, Not Just Models |
| 2 | + |
| 3 | +A production-ready MLOps pipeline for **timeseries prediction** and **forecasting** using ZenML and [Darts](https://unit8co.github.io/darts/index.html), designed for enterprise demand and sales forecasting across retail, e-commerce, and supply chain use cases. |
| 4 | + |
| 5 | +## 🚀 Product Overview |
| 6 | + |
| 7 | +FloraCast demonstrates how to build end-to-end MLOps workflows for time series forecasting. Built with ZenML's robust framework, it showcases enterprise-grade machine learning pipelines that can be deployed in both development and production environments. |
| 8 | + |
| 9 | +Focus: **Timeseries Prediction** and **Forecasting**. |
| 10 | + |
| 11 | +### Key Features |
| 12 | + |
| 13 | +- **End-to-End Timeseries Prediction & Forecasting Pipeline**: From data ingestion to batch inference on a schedule. |
| 14 | +- **Darts Integration**: Support for advanced forecasting models like [TFT (Temporal Fusion Transformer)](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html) |
| 15 | +- **Custom Materializers**: Production-ready artifact handling with visualizations |
| 16 | +- **Model Versioning**: Track and compare different model versions |
| 17 | +- **Flexible Configuration**: YAML-based configuration for different environments |
| 18 | +- **Cloud Ready**: Built with EKS/GKE/AKS deployment in mind |
| 19 | + |
| 20 | +## 💡 How It Works |
| 21 | + |
| 22 | +### ✈️ Pipelines |
| 23 | + |
| 24 | +FloraCast consists of two main pipelines: |
| 25 | + |
| 26 | +#### 1. Training Pipeline |
| 27 | + |
| 28 | +The training pipeline handles the complete ML workflow: |
| 29 | + |
| 30 | +1. **Data Ingestion** - Loads ecommerce sales data (synthetic by default) |
| 31 | +2. **Preprocessing** - Converts to Darts TimeSeries with train/validation split |
| 32 | +3. **Model Training** - Trains TFT model with configurable parameters |
| 33 | +4. **Evaluation** - Computes SMAPE metrics on validation set |
| 34 | + |
| 35 | + |
| 36 | +*FloraCast achieves excellent forecasting performance with SMAPE scores under 13, showing AI predictions closely tracking ground truth data.* |
| 37 | + |
| 38 | +#### 2. Batch Inference Pipeline |
| 39 | + |
| 40 | +The inference pipeline generates predictions using trained models: |
| 41 | + |
| 42 | +1. **Data Ingestion** - Loads new data for predictions |
| 43 | +2. **Preprocessing** - Applies same transformations as training |
| 44 | +3. **Batch Inference** - Generates forecasts and saves to CSV |
| 45 | + |
| 46 | + |
| 47 | +*Automated batch inference generates future predictions on a schedule, enabling proactive business planning and inventory management.* |
| 48 | + |
| 49 | +### 🔧 Architecture |
| 50 | + |
| 51 | + |
| 52 | +*Complete system architecture showing data flow through ZenML pipelines, from raw data ingestion to model training, evaluation, and automated batch inference.* |
| 53 | + |
| 54 | + |
| 55 | +*FloraCast leverages ZenML's Model Control Plane for enterprise-grade model versioning, lineage tracking, and automated deployment workflows.* |
| 56 | + |
| 57 | +## 📦 Installation |
| 58 | + |
| 59 | +### Prerequisites |
| 60 | + |
| 61 | +- Python 3.9+ |
| 62 | +- [Deployed ZenML](https://docs.zenml.io/deploying-zenml/deploying-zenml) |
| 63 | +- Virtual environment (recommended) |
| 64 | + |
| 65 | +### Setup |
| 66 | + |
| 67 | +1. **Clone the repository** (if part of zenml-projects): |
| 68 | +```bash |
| 69 | +cd zenml-projects/floracast |
| 70 | +``` |
| 71 | + |
| 72 | +2. **Create virtual environment**: |
| 73 | +```bash |
| 74 | +python -m venv venv |
| 75 | +source venv/bin/activate # On Windows: venv\\Scripts\\activate |
| 76 | +``` |
| 77 | + |
| 78 | +3. **Install dependencies**: |
| 79 | +```bash |
| 80 | +pip install -r requirements.txt |
| 81 | +``` |
| 82 | + |
| 83 | +## ⚡ Quick Start |
| 84 | + |
| 85 | +### Local Development |
| 86 | + |
| 87 | +1. **Run training pipeline**: |
| 88 | +```bash |
| 89 | +python run.py --config configs/training.yaml --pipeline train |
| 90 | +``` |
| 91 | + |
| 92 | +2. **Run inference pipeline**: |
| 93 | +```bash |
| 94 | +python run.py --config configs/inference.yaml --pipeline inference |
| 95 | +``` |
| 96 | + |
| 97 | +3. **View results**: |
| 98 | +- Check the predictions artifact for predictions |
| 99 | +- Use ZenML dashboard to view artifacts and metrics |
| 100 | + |
| 101 | +## ⚙️ Configuration Files |
| 102 | + |
| 103 | +FloraCast uses semantically named configuration files for different deployment scenarios: |
| 104 | + |
| 105 | +### Available Configurations |
| 106 | + |
| 107 | +- **`configs/training.yaml`** - Local development and training pipeline configuration |
| 108 | +- **`configs/inference.yaml`** - Batch inference pipeline configuration for production models |
| 109 | + |
| 110 | +### Customization Options |
| 111 | + |
| 112 | +Edit the appropriate config file to customize: |
| 113 | + |
| 114 | +- **Model parameters**: TFT hyperparameters, training epochs |
| 115 | +- **Data settings**: Date columns, frequency, validation split |
| 116 | +- **Evaluation**: Forecasting horizon, metrics |
| 117 | +- **Output**: File paths and formats |
| 118 | + |
| 119 | +``` |
| 120 | +floracast/ |
| 121 | +├── README.md |
| 122 | +├── requirements.txt |
| 123 | +├── .env.example |
| 124 | +├── configs/ |
| 125 | +│ ├── training.yaml # Training pipeline config |
| 126 | +│ └── inference.yaml # Inference pipeline config |
| 127 | +├── data/ |
| 128 | +│ └── ecommerce_daily.csv # Example input data |
| 129 | +├── pipelines/ |
| 130 | +│ ├── train_forecast_pipeline.py # Training pipeline definition |
| 131 | +│ └── batch_inference_pipeline.py # Batch inference pipeline definition |
| 132 | +├── steps/ |
| 133 | +│ ├── ingest.py # Data ingestion step |
| 134 | +│ ├── preprocess.py # Preprocessing step (train/val split, scaling) |
| 135 | +│ ├── train.py # Model training step |
| 136 | +│ ├── evaluate.py # Model evaluation step |
| 137 | +│ ├── promote.py # Model registration/promotion step |
| 138 | +│ ├── batch_infer.py # Batch inference step |
| 139 | +│ └── load_model.py # Model loading utilities |
| 140 | +├── materializers/ |
| 141 | +│ ├── tft_materializer.py # Custom TFTModel materializer |
| 142 | +│ └── timeseries_materializer.py # Custom TimeSeries materializer |
| 143 | +├── utils/ |
| 144 | +│ └── metrics.py # Forecasting metrics (e.g., SMAPE) |
| 145 | +└── run.py # CLI entry point for running pipelines |
| 146 | +``` |
| 147 | + |
| 148 | +### Key Components |
| 149 | + |
| 150 | +- **Custom Materializers**: Proper serialization for Darts TimeSeries with visualizations |
| 151 | +- **Flexible Models**: TFT primary, ExponentialSmoothing fallback |
| 152 | +- **Comprehensive Logging**: Detailed pipeline execution tracking |
| 153 | +- **Artifact Naming**: Clear, descriptive names for all pipeline outputs |
| 154 | + |
| 155 | +## 🚀 Production Deployment |
| 156 | + |
| 157 | +### ZenML Azure Stack Setup |
| 158 | + |
| 159 | +To run FloraCast on Azure with ZenML, set up a ZenML stack backed by Azure services: |
| 160 | + |
| 161 | +- **Artifact Store**: Azure Blob Storage |
| 162 | +- **Container Registry**: Azure Container Registry (ACR) |
| 163 | +- **Orchestrator**: Kubernetes Orchestrator targeting AKS |
| 164 | +- **Optional**: AzureML Step Operator for managed training; Azure Key Vault for secrets |
| 165 | + |
| 166 | +Quick start (CLI): |
| 167 | + |
| 168 | +```bash |
| 169 | +# Artifact Store (Azure Blob) |
| 170 | +zenml artifact-store register azure_store --flavor=azure \ |
| 171 | + --account_name=<AZURE_STORAGE_ACCOUNT> \ |
| 172 | + --container=<AZURE_STORAGE_CONTAINER> |
| 173 | + |
| 174 | +# Container Registry (ACR) |
| 175 | +zenml container-registry register azure_acr --flavor=azure \ |
| 176 | + --uri=<ACR_LOGIN_SERVER> |
| 177 | + |
| 178 | +# Orchestrator (AKS via Kubernetes) |
| 179 | +zenml orchestrator register aks_k8s --flavor=kubernetes \ |
| 180 | + --kubernetes_context=<AKS_KUBE_CONTEXT> \ |
| 181 | + --namespace=<NAMESPACE> |
| 182 | + |
| 183 | +# (Optional) AzureML Step Operator |
| 184 | +zenml step-operator register azureml_ops --flavor=azureml \ |
| 185 | + --subscription_id=<SUBSCRIPTION_ID> \ |
| 186 | + --resource_group=<RESOURCE_GROUP> \ |
| 187 | + --workspace_name=<AML_WORKSPACE> |
| 188 | + |
| 189 | +# Compose the stack |
| 190 | +zenml stack register azure_aks_stack \ |
| 191 | + -a azure_store -c azure_acr -o aks_k8s --set |
| 192 | +``` |
| 193 | + |
| 194 | +Read more: |
| 195 | + |
| 196 | +- **Set up an MLOps stack on Azure**: [ZenML Azure guide](https://docs.zenml.io/stacks/popular-stacks/azure-guide) |
| 197 | +- **Kubernetes Orchestrator (AKS)**: [Docs](https://docs.zenml.io/stacks/stack-components/orchestrators/kubernetes) |
| 198 | +- **Azure Blob Artifact Store**: [Docs](https://docs.zenml.io/stacks/stack-components/artifact-stores/azure) |
| 199 | +- **Azure Container Registry**: [Docs](https://docs.zenml.io/stacks/stack-components/container-registries/azure) |
| 200 | +- **AzureML Step Operator**: [Docs](https://docs.zenml.io/stacks/stack-components/step-operators/azureml) |
| 201 | +- **Terraform stack recipe for Azure**: [Hashicorp Registry](https://registry.terraform.io/modules/zenml-io/zenml-stack/azure/latest) |
| 202 | + |
| 203 | + |
| 204 | +## 🔬 Advanced Usage |
| 205 | + |
| 206 | +### Custom Data Sources |
| 207 | + |
| 208 | +Replace the default ecommerce data: |
| 209 | + |
| 210 | +1. **Update configuration**: |
| 211 | +```yaml |
| 212 | +# configs/training.yaml |
| 213 | +steps: |
| 214 | + ingest_data: |
| 215 | + parameters: |
| 216 | + data_source: "csv" # or "ecommerce_default" |
| 217 | + data_path: "path/to/your/data.csv" |
| 218 | + datetime_col: "timestamp" |
| 219 | + target_col: "sales" |
| 220 | + preprocess_for_training: |
| 221 | + parameters: |
| 222 | + datetime_col: "timestamp" |
| 223 | + target_col: "sales" |
| 224 | + freq: "D" |
| 225 | + val_ratio: 0.2 |
| 226 | +``` |
| 227 | +
|
| 228 | +```yaml |
| 229 | +# configs/inference.yaml |
| 230 | +steps: |
| 231 | + ingest_data: |
| 232 | + parameters: |
| 233 | + data_source: "csv" |
| 234 | + data_path: "path/to/your/data.csv" |
| 235 | + datetime_col: "timestamp" |
| 236 | + target_col: "sales" |
| 237 | + preprocess_for_inference: |
| 238 | + parameters: |
| 239 | + datetime_col: "timestamp" |
| 240 | + target_col: "sales" |
| 241 | + freq: "D" |
| 242 | +``` |
| 243 | +
|
| 244 | +2. **Ensure data format**: |
| 245 | + - DateTime index column |
| 246 | + - Numeric target variable |
| 247 | + - Daily frequency (or update `freq` parameter) |
| 248 | + |
| 249 | +### Model Experimentation |
| 250 | + |
| 251 | +Try different forecasting models by updating the config: |
| 252 | + |
| 253 | +```yaml |
| 254 | +# configs/training.yaml |
| 255 | +steps: |
| 256 | + train_model: |
| 257 | + parameters: |
| 258 | + model_name: "ExponentialSmoothing" # Switch from TFT to ES |
| 259 | + # Note: ExponentialSmoothing uses default params in code currently |
| 260 | +``` |
| 261 | + |
| 262 | +### Custom Metrics |
| 263 | + |
| 264 | +Extend `utils/metrics.py` to add additional forecasting metrics: |
| 265 | + |
| 266 | +```python |
| 267 | +from typing import Union |
| 268 | +import numpy as np |
| 269 | +from darts import TimeSeries |
| 270 | +
|
| 271 | +def mase(actual: Union[TimeSeries, np.ndarray], predicted: Union[TimeSeries, np.ndarray]) -> float: |
| 272 | + """Mean Absolute Scaled Error (example stub).""" |
| 273 | + # Implement MASE here |
| 274 | + return 0.0 |
| 275 | +``` |
| 276 | + |
| 277 | +Update `steps/evaluate.py` to import and route to the new metric: |
| 278 | + |
| 279 | +```python |
| 280 | +from utils.metrics import smape, mase |
| 281 | +
|
| 282 | +# ... inside evaluate(...) |
| 283 | +if metric == "smape": |
| 284 | + score = smape(actual, predictions_for_eval) |
| 285 | +elif metric == "mase": |
| 286 | + score = mase(actual, predictions_for_eval) |
| 287 | +else: |
| 288 | + raise ValueError(f"Unknown metric: {metric}") |
| 289 | +``` |
| 290 | + |
| 291 | +Then configure the metric in your training config (after updating `evaluate`): |
| 292 | + |
| 293 | +```yaml |
| 294 | +# configs/training.yaml |
| 295 | +steps: |
| 296 | + evaluate: |
| 297 | + parameters: |
| 298 | + metric: "mase" |
| 299 | +``` |
| 300 | + |
| 301 | +## 🤝 Contributing |
| 302 | + |
| 303 | +FloraCast follows ZenML best practices and is designed to be extended: |
| 304 | + |
| 305 | +1. **Add New Models**: Extend `steps/train.py` with additional Darts models |
| 306 | +2. **Custom Materializers**: Create materializers for new data types |
| 307 | +3. **Additional Metrics**: Expand evaluation capabilities |
| 308 | +4. **New Data Sources**: Add support for different input formats |
| 309 | + |
| 310 | +## 📝 Next Steps |
| 311 | + |
| 312 | +After running FloraCast successfully: |
| 313 | + |
| 314 | +1. **Explore ZenML Dashboard**: View pipeline runs, artifacts, and metrics |
| 315 | +2. **Experiment with Models**: Try different TFT configurations |
| 316 | +3. **Add Real Data**: Replace synthetic data with your forecasting use case |
| 317 | +4. **Deploy to Production**: Use AKS configuration for scale |
| 318 | + |
| 319 | +## 🆘 Troubleshooting |
| 320 | + |
| 321 | +### Common Issues |
| 322 | + |
| 323 | +**TFT Training Fails**: |
| 324 | +- Check `add_relative_index: true` in configuration |
| 325 | +- Verify sufficient data length (>30 points for input_chunk_length=30) |
| 326 | + |
| 327 | +**Materializer Errors**: |
| 328 | +- Ensure datetime columns are properly formatted |
| 329 | +- Check that TimeSeries can be created from your data |
| 330 | + |
| 331 | +**Memory Issues**: |
| 332 | +- Reduce `batch_size` or `hidden_size` in model parameters |
| 333 | +- Use ExponentialSmoothing for lighter resource usage |
| 334 | + |
| 335 | +## 📚 Resources |
| 336 | + |
| 337 | +- [ZenML Documentation](https://docs.zenml.io/) |
| 338 | +- [Darts Documentation](https://unit8co.github.io/darts/) |
| 339 | +- [Azure ML Documentation](https://docs.microsoft.com/en-us/azure/machine-learning/) |
| 340 | + |
| 341 | +--- |
| 342 | + |
| 343 | +Built with ❤️ using [ZenML](https://zenml.io) - *The MLOps Framework for Production AI* |
0 commit comments