-
Notifications
You must be signed in to change notification settings - Fork 5
/
config.yaml
70 lines (65 loc) · 1.99 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
cwd: ${hydra:runtime.cwd}
workers: 4
num_gpus: 2
seed: 42
project_name: Anticipation
experiment_name: CMFuser
init_from_model: null
dataset_root_dir: /home/zhong/Documents/datasets
primary_metric: val_mt5r_action_all-fused
dist_backend: nccl
temporal_context: 10
train:
batch_size: 3
num_epochs: 50
use_mixup: true
mixup_backbone: true # whether to mixup inputs or the backbone outputs
mixup_alpha: 0.1 # this value is from vivit: https://github.com/google-research/scenic/blob/main/scenic/projects/vivit/configs/epic_kitchens/vivit_large_factorised_encoder.py
label_smoothing:
action: 0.4
verb: 0.01
noun: 0.03
modules_to_keep: null
loss_wts:
# classification for future action
cls_action: 1.0
cls_verb: 1.0
cls_noun: 1.0
# classification for updated past action
past_cls_action: 1.0
past_cls_verb: 1.0
past_cls_noun: 1.0
# regression for updated past feature
past_reg: 1.0
eval:
batch_size: 3
model:
modal_dims: null #{"rgb": 1024, "objects": 352} # length of this dict corresponds to the number of modalities
modal_feature_order: ["rgb", "objects", "audio", "poses", "flow"]
common_dim: 1024
dropout: 0.2
opt:
lr: 0.001 # learning rate
wd: 0.000001 # weight decay
lr_wd: null # [[backbone, 0.0001, 0.000001]] # modules with specific lr and wd
grad_clip: null # by default, no clipping
warmup:
_target_: common.scheduler.Warmup
init_lr_ratio: 0.01 # Warmup from this ratio of the orig LRs
num_epochs: 0 # Warmup for this many epochs (will take out of total epochs)
defaults:
- dataset@dataset_train: epic_kitchens100/train
- dataset@dataset_eval: epic_kitchens100/val
- data@data_train: default
- data@data_eval: default
- dataset/epic_kitchens100/common
- dataset/egtea/common
- model/common
- opt/optimizer: sgd
- opt/scheduler: cosine
- model/backbone: identity
- model/future_predictor: base_future_predictor
- model/fuser: SA-Fuser
- model/CMFP: cmfp_early
- model/mapping: linear
- _self_