You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/cuda/init.py:106: UserWarning:
NVIDIA GeForce RTX 3070 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3070 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))
fatal: not a git repository (or any parent up to mount point /media/henu)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
2022-10-16 13:31:40,380 - mmdet - INFO - Environment info:
sys.platform: linux
Python: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3070
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_11.4.r11.4/compiler.30300941_0
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.9.0+cu102
PyTorch compiling details: PyTorch built with:
GCC 7.3
C++ Version: 201402
Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
2022-10-16 13:31:43,812 - mmdet - INFO - Distributed training: False
2022-10-16 13:31:47,265 - mmdet - INFO - Config:
model = dict(
type='DARDet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False,
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='DARDetHead',
num_classes=15,
in_channels=256,
stacked_convs=3,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
center_sampling=False,
dcn_on_last_conv=False,
use_atss=True,
use_vfl=True,
loss_cls=dict(
type='VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
loss_weight=1.0),
loss_rbox=dict(type='RotatedIoULoss', loss_weight=1.5),
loss_rbox_refine=dict(type='RotatedIoULoss', loss_weight=2.0)),
train_cfg=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
rotate_test=True,
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.1),
max_per_img=1500))
dataset_type = 'DotaKDataset'
data_root = '/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1024, 1024), keep_ratio=True),
dict(
type='RandomFlip',
direction=['horizontal', 'vertical', 'diagonal'],
flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict( delete=True,
type='ClassBalancedDataset',
oversample_thr=0.06,
dataset=dict(
type='DotaKDataset',
ann_file=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/DOTA1_5_trainval1024.json',
img_prefix=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1024, 1024), keep_ratio=True),
dict(
type='RandomFlip',
direction=['horizontal', 'vertical', 'diagonal'],
flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
])),
val=dict(
type='DotaKDataset',
ann_file=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/DOTA1_5_trainval1024.json',
img_prefix=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='DotaKDataset',
ann_file=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/test1024/DOTA1_5_test1024.json',
img_prefix=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/test1024/images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]))
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
work_dir = '/media/henu/新加卷1/rxh/DARDet-master/workdir/DARDet_r50_DCN_rotate'
load_from = None
resume_from = None
evaluation = dict(
interval=3,
metric='bbox',
eval_dir='/media/henu/新加卷1/rxh/DARDet-master/workdir/DARDet_r50_DCN_rotate',
gt_dir='/media/zf/E/Dataset/dota_1024_s2anet2/valGTtxt/')
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
workflow = [('train', 1)]
gpu_ids = [0]
/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/backbones/resnet.py:400: UserWarning: DeprecationWarning: pretrained is a deprecated, please use "init_cfg" instead
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
2022-10-16 13:31:47,479 - mmcv - INFO - load model from: torchvision://resnet50
2022-10-16 13:31:47,479 - mmcv - INFO - Use load_from_torchvision loader
2022-10-16 13:31:47,558 - mmcv - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/cnn/utils/weight_init.py:100: UserWarning: init_cfg without layer key, if you do not define override key either, this init_cfg will do nothing
'init_cfg without layer key, if you do not define override'
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
fatal: not a git repository (or any parent up to mount point /media/henu)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
2022-10-16 13:31:48,151 - mmdet - INFO - Start running, host: henu@henu-Super-Server, work_dir: /media/henu/新加卷1/rxh/DARDet-master/workdir/DARDet_r50_DCN_rotate
2022-10-16 13:31:48,151 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
Traceback (most recent call last):
File "/home/henu/.pycharm_helpers/pydev/pydevd.py", line 1483, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "/home/henu/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/media/henu/新加卷1/rxh/DARDet-master/tools/train.py", line 191, in
main()
File "/media/henu/新加卷1/rxh/DARDet-master/tools/train.py", line 188, in main
meta=meta)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/apis/train.py", line 175, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 125, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 50, in train
self.run_iter(data_batch, train_mode=True, **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 30, in run_iter
**kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 67, in train_step
return self.module.train_step(*inputs[0], **kwargs[0])
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/base.py", line 237, in train_step
losses = self(**data)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 95, in new_func
return old_func(*args, **kwargs)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/base.py", line 171, in forward
return self.forward_train(img, img_metas, **kwargs)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/dardet.py", line 143, in forward_train
x = self.extract_feat(img)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/single_stage.py", line 37, in extract_feat
x = self.backbone(img)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/backbones/resnet.py", line 637, in forward
x = self.relu(x)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/activation.py", line 102, in forward
return F.relu(input, inplace=self.inplace)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/functional.py", line 1296, in relu
result = torch.relu(input)
RuntimeError: CUDA error: no kernel image is available for execution on the device
After debugging, I found the variable 'data' in mmdet/models/detectors/base.py, Line237 shows that 'Uable to get repr for <class 'dict>'
Specially, the variable 'img' in 'data' shows that 'Uable to get repr for <class 'torch.Tensor'>
and the variable 'gt_bboxes' in 'data' shows that 'Uable to get repr for <class 'list'>
What's the probable reason?
The text was updated successfully, but these errors were encountered:
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/cuda/init.py:106: UserWarning:
NVIDIA GeForce RTX 3070 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3070 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))
fatal: not a git repository (or any parent up to mount point /media/henu)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
2022-10-16 13:31:40,380 - mmdet - INFO - Environment info:
sys.platform: linux
Python: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3070
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_11.4.r11.4/compiler.30300941_0
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.9.0+cu102
PyTorch compiling details: PyTorch built with:
TorchVision: 0.10.0+cu102
OpenCV: 4.6.0
MMCV: 1.3.3
MMCV Compiler: GCC 9.4
MMCV CUDA Compiler: 11.4
MMDetection: 2.13.0+
2022-10-16 13:31:43,812 - mmdet - INFO - Distributed training: False
2022-10-16 13:31:47,265 - mmdet - INFO - Config:
model = dict(
type='DARDet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False,
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='DARDetHead',
num_classes=15,
in_channels=256,
stacked_convs=3,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
center_sampling=False,
dcn_on_last_conv=False,
use_atss=True,
use_vfl=True,
loss_cls=dict(
type='VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
loss_weight=1.0),
loss_rbox=dict(type='RotatedIoULoss', loss_weight=1.5),
loss_rbox_refine=dict(type='RotatedIoULoss', loss_weight=2.0)),
train_cfg=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
rotate_test=True,
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.1),
max_per_img=1500))
dataset_type = 'DotaKDataset'
data_root = '/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1024, 1024), keep_ratio=True),
dict(
type='RandomFlip',
direction=['horizontal', 'vertical', 'diagonal'],
flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
delete=True,
type='ClassBalancedDataset',
oversample_thr=0.06,
dataset=dict(
type='DotaKDataset',
ann_file=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/DOTA1_5_trainval1024.json',
img_prefix=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1024, 1024), keep_ratio=True),
dict(
type='RandomFlip',
direction=['horizontal', 'vertical', 'diagonal'],
flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
])),
val=dict(
type='DotaKDataset',
ann_file=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/DOTA1_5_trainval1024.json',
img_prefix=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/trainval1024/images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='DotaKDataset',
ann_file=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/test1024/DOTA1_5_test1024.json',
img_prefix=
'/media/henu/新加卷1/rxh/DARDet-master/data/dota15_1024/test1024/images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]))
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
work_dir = '/media/henu/新加卷1/rxh/DARDet-master/workdir/DARDet_r50_DCN_rotate'
load_from = None
resume_from = None
evaluation = dict(
interval=3,
metric='bbox',
eval_dir='/media/henu/新加卷1/rxh/DARDet-master/workdir/DARDet_r50_DCN_rotate',
gt_dir='/media/zf/E/Dataset/dota_1024_s2anet2/valGTtxt/')
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
workflow = [('train', 1)]
gpu_ids = [0]
/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/backbones/resnet.py:400: UserWarning: DeprecationWarning: pretrained is a deprecated, please use "init_cfg" instead
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
2022-10-16 13:31:47,479 - mmcv - INFO - load model from: torchvision://resnet50
2022-10-16 13:31:47,479 - mmcv - INFO - Use load_from_torchvision loader
2022-10-16 13:31:47,558 - mmcv - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/cnn/utils/weight_init.py:100: UserWarning: init_cfg without layer key, if you do not define override key either, this init_cfg will do nothing
'init_cfg without layer key, if you do not define override'
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
fatal: not a git repository (or any parent up to mount point /media/henu)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
2022-10-16 13:31:48,151 - mmdet - INFO - Start running, host: henu@henu-Super-Server, work_dir: /media/henu/新加卷1/rxh/DARDet-master/workdir/DARDet_r50_DCN_rotate
2022-10-16 13:31:48,151 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
pydev debugger: warning: trying to add breakpoint to file that does not exist: /home/henu/anaconda3/envs/dardet/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py (will have no effect)
Traceback (most recent call last):
File "/home/henu/.pycharm_helpers/pydev/pydevd.py", line 1483, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "/home/henu/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/media/henu/新加卷1/rxh/DARDet-master/tools/train.py", line 191, in
main()
File "/media/henu/新加卷1/rxh/DARDet-master/tools/train.py", line 188, in main
meta=meta)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/apis/train.py", line 175, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 125, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 50, in train
self.run_iter(data_batch, train_mode=True, **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 30, in run_iter
**kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 67, in train_step
return self.module.train_step(*inputs[0], **kwargs[0])
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/base.py", line 237, in train_step
losses = self(**data)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 95, in new_func
return old_func(*args, **kwargs)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/base.py", line 171, in forward
return self.forward_train(img, img_metas, **kwargs)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/dardet.py", line 143, in forward_train
x = self.extract_feat(img)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/detectors/single_stage.py", line 37, in extract_feat
x = self.backbone(img)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/media/henu/新加卷1/rxh/DARDet-master/mmdet/models/backbones/resnet.py", line 637, in forward
x = self.relu(x)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/modules/activation.py", line 102, in forward
return F.relu(input, inplace=self.inplace)
File "/home/henu/anaconda3/envs/dardet/lib/python3.7/site-packages/torch/nn/functional.py", line 1296, in relu
result = torch.relu(input)
RuntimeError: CUDA error: no kernel image is available for execution on the device
After debugging, I found the variable 'data' in mmdet/models/detectors/base.py, Line237 shows that 'Uable to get repr for <class 'dict>'
Specially, the variable 'img' in 'data' shows that 'Uable to get repr for <class 'torch.Tensor'>
and the variable 'gt_bboxes' in 'data' shows that 'Uable to get repr for <class 'list'>
What's the probable reason?
The text was updated successfully, but these errors were encountered: