-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
177 lines (136 loc) · 5.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from __future__ import absolute_import, division, print_function
import cv2
import numbers
import math
import os
import sys
import glob
import argparse
import numpy as np
import PIL.Image as pil
import matplotlib as mpl
import matplotlib.cm as cm
from util import utils
import torch
from torchvision import transforms, datasets
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import math
# import pytorch_ssim
import torchvision
from torch.autograd import Variable
from my_pytorch_mssim import pytorch_msssim
from util import Vidsom
from tqdm import tqdm
# from tensorboardX import SummaryWriter
device = torch.device("cuda:0")
# from net_multi_bokeh import model_bokeh_base
import multi_scale_bokeh
feed_width = 1024
feed_height = 1024
bokehnet = multi_scale_bokeh.multi_bokeh().to(device)
bokehnet.net.load_state_dict(torch.load('checkpoints/MPFNet.pth', map_location=device))
class bokehDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.data = pd.read_csv(csv_file)
self.transform = transform
self.root_dir = root_dir
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
bok = pil.open(self.root_dir + self.data.iloc[idx, 0][1:]).convert('RGB')
org = pil.open(self.root_dir + self.data.iloc[idx, 1][1:]).convert('RGB')
bok = bok.resize((feed_width, feed_height), pil.LANCZOS)
org = org.resize((feed_width, feed_height), pil.LANCZOS)
if self.transform:
bok_dep = self.transform(bok)
org_dep = self.transform(org)
return (bok_dep, org_dep)
def smooth_loss(im):
return torch.mean(torch.abs(im[:, :, 1:, :] - im[:, :, :-1, :])) + torch.mean(
torch.abs(im[:, :, :, 1:] - im[:, :, :, :-1]))
transform1 = transforms.Compose(
[
transforms.ToTensor(),
])
transform2 = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=1),
transforms.ToTensor(),
])
transform3 = transforms.Compose(
[
transforms.RandomVerticalFlip(p=1),
transforms.ToTensor(),
])
trainset1 = bokehDataset(csv_file='./data/train.csv', root_dir='./', transform=transform1)
trainset2 = bokehDataset(csv_file='./data/train.csv', root_dir='./', transform=transform2)
trainset3 = bokehDataset(csv_file='./data/train.csv', root_dir='./', transform=transform3)
# batch size changed
trainloader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([trainset1, trainset2, trainset3]),
batch_size=2,
shuffle=True, num_workers=0)
testset = bokehDataset(csv_file='./data/test.csv', root_dir='./', transform=transform1)
testloader = torch.utils.data.DataLoader(testset, batch_size=2,
shuffle=False, num_workers=0)
# learning_rate = 0.0001
learning_rate = 0.00001
optimizer = optim.Adam(list(bokehnet.parameters()), lr=learning_rate, betas=(0.9, 0.999))
sm = nn.Softmax(dim=1)
ssim_loss = pytorch_ssim.SSIM()
msssim_loss = pytorch_msssim.MS_SSIM()
MSE_LossFn = nn.MSELoss()
L1_LossFn = nn.L1Loss()
def multi_scale_loss(pred_frames, gt, alpha=0.1, w1=1, w2=2, w3=4):
gt_lv2 = F.interpolate(gt, scale_factor=0.5, mode='bilinear')
gt_lv3 = F.interpolate(gt, scale_factor=0.25, mode='bilinear')
lv1_loss = L1_LossFn(gt, pred_frames[0]) + alpha * (1 - ssim_loss(gt, pred_frames[0]))
lv2_loss = L1_LossFn(gt_lv2, pred_frames[1]) + alpha * (1 - ssim_loss(gt_lv2, pred_frames[1]))
lv3_loss = L1_LossFn(gt_lv3, pred_frames[2]) + alpha * (1 - ssim_loss(gt_lv3, pred_frames[2]))
loss = w1 * lv1_loss + w2 * lv2_loss + w3 * lv3_loss
return loss
def train(dataloader):
running_l1_loss = 0
running_ms_loss = 0
running_sal_loss = 0
running_loss = 0
for i, data in enumerate(tqdm(dataloader), 0):
bok, org = data
bok, org = bok.to(device), org.to(device)
bok_pred = bokehnet(org)
loss = (1 - msssim_loss(bok_pred, bok))
running_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i % 100 == 0):
print('Batch: ', i, '/', len(dataloader), ' Loss:', loss.item())
if (i % 1600 == 0):
torch.save(bokehnet.state_dict(), './checkpoints/model/MPFNet-' + str(epoch) + '-' + str(i) + '.pth')
print(loss.item())
print(running_l1_loss / len(dataloader))
print(running_ms_loss / len(dataloader))
print(running_loss / len(dataloader))
def val(dataloader):
running_l1_loss = 0
running_ms_loss = 0
with torch.no_grad():
for i, data in enumerate(tqdm(dataloader), 0):
bok, org = data
bok, org = bok.to(device), org.to(device)
bok_pred = bokehnet(org)
l1_loss = L1_LossFn(bok_pred[0], bok)
ms_loss = 1 - ssim_loss(bok_pred, bok)
running_l1_loss += l1_loss.item()
running_ms_loss += ms_loss.item()
print('Validation l1 Loss: ', running_l1_loss / len(dataloader))
start_ep = 1
for epoch in range(start_ep, 4000):
print(epoch)
train(trainloader)
with torch.no_grad():
val(testloader)
# train(trainloader)