Skip to content

Latest commit

 

History

History
88 lines (53 loc) · 2.78 KB

README.rst

File metadata and controls

88 lines (53 loc) · 2.78 KB

Orbit Predictor

https://travis-ci.org/satellogic/orbit-predictor.svg?branch=master https://coveralls.io/repos/github/satellogic/orbit-predictor/badge.svg?branch=master

Orbit Predictor is a Python library to propagate orbits of Earth-orbiting objects (satellites, ISS, Santa Claus, etc) using TLE (Two-Line Elements set)

Al the hard work is done by Brandon Rhodes implementation of SGP4.

We can say Orbit predictor is kind of a "wrapper" for the python implementation of SGP4

To install it

You can install orbit-predictor from pypi:

pip install orbit-predictor

Use example

When will be the ISS over Argentina?

In [1]: from orbit_predictor.sources import EtcTLESource

In [2]: from orbit_predictor.locations import ARG

In [3]: source = EtcTLESource(filename="examples/iss.tle")

In [4]: predictor = source.get_predictor("ISS")

In [5]: predictor.get_next_pass(ARG)
Out[5]: <PredictedPass ISS over ARG on 2017-11-10 22:48:10.607212>

In [6]: predicted_pass = _

In [7]: position = predictor.get_position(predicted_pass.aos)

In [8]: ARG.is_visible(position)  # Can I see the ISS from this location?
Out[8]: True

In [9]: import datetime

In [10]: position_delta = predictor.get_position(predicted_pass.los + datetime.timedelta(minutes=20))

In [11]: ARG.is_visible(position_delta)
Out[11]: False

In [12]: tomorrow = datetime.datetime.utcnow() + datetime.timedelta(days=1)

In [13]: predictor.get_next_pass(ARG, tomorrow, max_elevation_gt=20)
Out[13]: <PredictedPass ISS over ARG on 2017-11-11 23:31:36.878827>

WSTLESource needs the tle.satellogic.com service to be working. We are doing changes to have it public available.

Currently you have available these sources

  • Memorytlesource: in memory storage.
  • EtcTLESource: a uniq TLE is stored in /etc/latest_tle
  • WSTLESource: It source is using the TLE API.

About HighAccuracyTLEPredictor

The default 'predictor' code is tunned to low CPU usage. (IE: a Satellite computer). The error estimation is ~20 seconds. If you need more than that you can use the HighAccuracyTLEPredictor passing precise=True to get_predictor().

How to contribute

  • Write pep8 complaint code.
  • Wrap the code on 100 collumns.
  • Always use a branch for each feature and Merge Proposals.
  • Always run the tests before to push. (test implies pep8 validation)