-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglszm.py
407 lines (308 loc) · 14.4 KB
/
glszm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import numpy
from six.moves import range
from radiomics import base, cMatrices
class RadiomicsGLSZM(base.RadiomicsFeaturesBase):
r"""
A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as a the number
of connected voxels that share the same gray level intensity. A voxel is considered connected if the distance is 1
according to the infinity norm (26-connected region in a 3D, 8-connected region in 2D).
In a gray level size zone matrix :math:`P(i,j)` the :math:`(i,j)^{\text{th}}` element equals the number of zones
with gray level :math:`i` and size :math:`j` appear in image. Contrary to GLCM and GLRLM, the GLSZM is rotation
independent, with only one matrix calculated for all directions in the ROI.
As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:
.. math::
\textbf{I} = \begin{bmatrix}
5 & 2 & 5 & 4 & 4\\
3 & 3 & 3 & 1 & 3\\
2 & 1 & 1 & 1 & 3\\
4 & 2 & 2 & 2 & 3\\
3 & 5 & 3 & 3 & 2 \end{bmatrix}
The GLSZM then becomes:
.. math::
\textbf{P} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0\\
1 & 0 & 0 & 0 & 1\\
1 & 0 & 1 & 0 & 1\\
1 & 1 & 0 & 0 & 0\\
3 & 0 & 0 & 0 & 0 \end{bmatrix}
Let:
- :math:`N_g` be the number of discreet intensity values in the image
- :math:`N_s` be the number of discreet zone sizes in the image
- :math:`N_p` be the number of voxels in the image
- :math:`N_z` be the number of zones in the ROI, which is equal to :math:`\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}
{\textbf{P}(i,j)}` and :math:`1 \leq N_z \leq N_p`
- :math:`\textbf{P}(i,j)` be the size zone matrix
- :math:`p(i,j)` be the normalized size zone matrix, defined as :math:`p(i,j) = \frac{\textbf{P}(i,j)}{N_z}`
.. note::
The mathematical formulas that define the GLSZM features correspond to the definitions of features extracted from
the GLRLM.
References
- Guillaume Thibault; Bernard Fertil; Claire Navarro; Sandrine Pereira; Pierre Cau; Nicolas Levy; Jean Sequeira;
Jean-Luc Mari (2009). "Texture Indexes and Gray Level Size Zone Matrix. Application to Cell Nuclei Classification".
Pattern Recognition and Information Processing (PRIP): 140-145.
- `<https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix>`_
"""
def __init__(self, inputImage, inputMask, **kwargs):
super(RadiomicsGLSZM, self).__init__(inputImage, inputMask, **kwargs)
self.P_glszm = None
self.imageArray = self._applyBinning(self.imageArray)
def _initCalculation(self, voxelCoordinates=None):
self.P_glszm = self._calculateMatrix(voxelCoordinates)
self._calculateCoefficients()
self.logger.debug('GLSZM feature class initialized, calculated GLSZM with shape %s', self.P_glszm.shape)
def _calculateMatrix(self, voxelCoordinates=None):
"""
Number of times a region with a
gray level and voxel count occurs in an image. P_glszm[level, voxel_count] = # occurrences
For 3D-images this concerns a 26-connected region, for 2D an 8-connected region
"""
self.logger.debug('Calculating GLSZM matrix in C')
Ng = self.coefficients['Ng']
Ns = numpy.sum(self.maskArray)
matrix_args = [
self.imageArray,
self.maskArray,
Ng,
Ns,
self.settings.get('force2D', False),
self.settings.get('force2Ddimension', 0)
]
if self.voxelBased:
matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]
P_glszm = cMatrices.calculate_glszm(*matrix_args) # shape (Nvox, Ng, Ns)
# Delete rows that specify gray levels not present in the ROI
NgVector = range(1, Ng + 1) # All possible gray values
GrayLevels = self.coefficients['grayLevels'] # Gray values present in ROI
emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels))) # Gray values NOT present in ROI
P_glszm = numpy.delete(P_glszm, emptyGrayLevels - 1, 1)
return P_glszm
def _calculateCoefficients(self):
self.logger.debug('Calculating GLSZM coefficients')
ps = numpy.sum(self.P_glszm, 1) # shape (Nvox, Ns)
pg = numpy.sum(self.P_glszm, 2) # shape (Nvox, Ng)
ivector = self.coefficients['grayLevels'].astype(float) # shape (Ng,)
jvector = numpy.arange(1, self.P_glszm.shape[2] + 1, dtype=numpy.float64) # shape (Ns,)
# Get the number of zones in this GLSZM
Nz = numpy.sum(self.P_glszm, (1, 2)) # shape (Nvox,)
Nz[Nz == 0] = 1 # set sum to numpy.spacing(1) if sum is 0?
# Get the number of voxels represented by this GLSZM: Multiply the zones by their size and sum them
Np = numpy.sum(ps * jvector[None, :], 1) # shape (Nvox, )
Np[Np == 0] = 1
# Delete columns that specify zone sizes not present in the ROI
emptyZoneSizes = numpy.where(numpy.sum(ps, 0) == 0)
self.P_glszm = numpy.delete(self.P_glszm, emptyZoneSizes, 2)
jvector = numpy.delete(jvector, emptyZoneSizes)
ps = numpy.delete(ps, emptyZoneSizes, 1)
self.coefficients['Np'] = Np
self.coefficients['Nz'] = Nz
self.coefficients['ps'] = ps
self.coefficients['pg'] = pg
self.coefficients['ivector'] = ivector
self.coefficients['jvector'] = jvector
def getSmallAreaEmphasisFeatureValue(self):
r"""
**1. Small Area Emphasis (SAE)**
.. math::
\textit{SAE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{j^2}}}{N_z}
SAE is a measure of the distribution of small size zones, with a greater value indicative of more smaller size zones
and more fine textures.
"""
ps = self.coefficients['ps']
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
sae = numpy.sum(ps / (jvector[None, :] ** 2), 1) / Nz
return sae
def getLargeAreaEmphasisFeatureValue(self):
r"""
**2. Large Area Emphasis (LAE)**
.. math::
\textit{LAE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)j^2}}{N_z}
LAE is a measure of the distribution of large area size zones, with a greater value indicative of more larger size
zones and more coarse textures.
"""
ps = self.coefficients['ps']
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
lae = numpy.sum(ps * (jvector[None, :] ** 2), 1) / Nz
return lae
def getGrayLevelNonUniformityFeatureValue(self):
r"""
**3. Gray Level Non-Uniformity (GLN)**
.. math::
\textit{GLN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_s}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z}
GLN measures the variability of gray-level intensity values in the image, with a lower value indicating more
homogeneity in intensity values.
"""
pg = self.coefficients['pg']
Nz = self.coefficients['Nz']
iv = numpy.sum(pg ** 2, 1) / Nz
return iv
def getGrayLevelNonUniformityNormalizedFeatureValue(self):
r"""
**4. Gray Level Non-Uniformity Normalized (GLNN)**
.. math::
\textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_s}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}
GLNN measures the variability of gray-level intensity values in the image, with a lower value indicating a greater
similarity in intensity values. This is the normalized version of the GLN formula.
"""
pg = self.coefficients['pg']
Nz = self.coefficients['Nz']
ivn = numpy.sum(pg ** 2, 1) / Nz ** 2
return ivn
def getSizeZoneNonUniformityFeatureValue(self):
r"""
**5. Size-Zone Non-Uniformity (SZN)**
.. math::
\textit{SZN} = \frac{\sum^{N_s}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z}
SZN measures the variability of size zone volumes in the image, with a lower value indicating more homogeneity in
size zone volumes.
"""
ps = self.coefficients['ps']
Nz = self.coefficients['Nz']
szv = numpy.sum(ps ** 2, 1) / Nz
return szv
def getSizeZoneNonUniformityNormalizedFeatureValue(self):
r"""
**6. Size-Zone Non-Uniformity Normalized (SZNN)**
.. math::
\textit{SZNN} = \frac{\sum^{N_s}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}
SZNN measures the variability of size zone volumes throughout the image, with a lower value indicating more
homogeneity among zone size volumes in the image. This is the normalized version of the SZN formula.
"""
ps = self.coefficients['ps']
Nz = self.coefficients['Nz']
szvn = numpy.sum(ps ** 2, 1) / Nz ** 2
return szvn
def getZonePercentageFeatureValue(self):
r"""
**7. Zone Percentage (ZP)**
.. math::
\textit{ZP} = \frac{N_z}{N_p}
ZP measures the coarseness of the texture by taking the ratio of number of zones and number of voxels in the ROI.
Values are in range :math:`\frac{1}{N_p} \leq ZP \leq 1`, with higher values indicating a larger portion of the ROI
consists of small zones (indicates a more fine texture).
"""
Nz = self.coefficients['Nz']
Np = self.coefficients['Np']
zp = Nz / Np
return zp
def getGrayLevelVarianceFeatureValue(self):
r"""
**8. Gray Level Variance (GLV)**
.. math::
\textit{GLV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)(i - \mu)^2}
Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)i}`
GLV measures the variance in gray level intensities for the zones.
"""
ivector = self.coefficients['ivector']
Nz = self.coefficients['Nz']
pg = self.coefficients['pg'] / Nz[:, None] # divide by Nz to get the normalized matrix
u_i = numpy.sum(pg * ivector[None, :], 1, keepdims=True)
glv = numpy.sum(pg * (ivector[None, :] - u_i) ** 2, 1)
return glv
def getZoneVarianceFeatureValue(self):
r"""
**9. Zone Variance (ZV)**
.. math::
\textit{ZV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)(j - \mu)^2}
Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)j}`
ZV measures the variance in zone size volumes for the zones.
"""
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
ps = self.coefficients['ps'] / Nz[:, None] # divide by Nz to get the normalized matrix
u_j = numpy.sum(ps * jvector[None, :], 1, keepdims=True)
zv = numpy.sum(ps * (jvector[None, :] - u_j) ** 2, 1)
return zv
def getZoneEntropyFeatureValue(self):
r"""
**10. Zone Entropy (ZE)**
.. math::
\textit{ZE} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)\log_{2}(p(i,j)+\epsilon)}
Here, :math:`\epsilon` is an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`).
ZE measures the uncertainty/randomness in the distribution of zone sizes and gray levels. A higher value indicates
more heterogeneneity in the texture patterns.
"""
eps = numpy.spacing(1)
Nz = self.coefficients['Nz']
p_glszm = self.P_glszm / Nz[:, None, None] # divide by Nz to get the normalized matrix
ze = -numpy.sum(p_glszm * numpy.log2(p_glszm + eps), (1, 2))
return ze
def getLowGrayLevelZoneEmphasisFeatureValue(self):
r"""
**11. Low Gray Level Zone Emphasis (LGLZE)**
.. math::
\textit{LGLZE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}
LGLZE measures the distribution of lower gray-level size zones, with a higher value indicating a greater proportion
of lower gray-level values and size zones in the image.
"""
pg = self.coefficients['pg']
ivector = self.coefficients['ivector']
Nz = self.coefficients['Nz']
lie = numpy.sum(pg / (ivector[None, :] ** 2), 1) / Nz
return lie
def getHighGrayLevelZoneEmphasisFeatureValue(self):
r"""
**12. High Gray Level Zone Emphasis (HGLZE)**
.. math::
\textit{HGLZE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)i^2}}{N_z}
HGLZE measures the distribution of the higher gray-level values, with a higher value indicating a greater proportion
of higher gray-level values and size zones in the image.
"""
pg = self.coefficients['pg']
ivector = self.coefficients['ivector']
Nz = self.coefficients['Nz']
hie = numpy.sum(pg * (ivector[None, :] ** 2), 1) / Nz
return hie
def getSmallAreaLowGrayLevelEmphasisFeatureValue(self):
r"""
**13. Small Area Low Gray Level Emphasis (SALGLE)**
.. math::
\textit{SALGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{i^2j^2}}}{N_z}
SALGLE measures the proportion in the image of the joint distribution of smaller size zones with lower gray-level
values.
"""
ivector = self.coefficients['ivector']
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
lisae = numpy.sum(self.P_glszm / ((ivector[None, :, None] ** 2) * (jvector[None, None, :] ** 2)), (1, 2)) / Nz
return lisae
def getSmallAreaHighGrayLevelEmphasisFeatureValue(self):
r"""
**14. Small Area High Gray Level Emphasis (SAHGLE)**
.. math::
\textit{SAHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)i^2}{j^2}}}{N_z}
SAHGLE measures the proportion in the image of the joint distribution of smaller size zones with higher gray-level
values.
"""
ivector = self.coefficients['ivector']
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
hisae = numpy.sum(self.P_glszm * (ivector[None, :, None] ** 2) / (jvector[None, None, :] ** 2), (1, 2)) / Nz
return hisae
def getLargeAreaLowGrayLevelEmphasisFeatureValue(self):
r"""
**15. Large Area Low Gray Level Emphasis (LALGLE)**
.. math::
\textit{LALGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)j^2}{i^2}}}{N_z}
LALGLE measures the proportion in the image of the joint distribution of larger size zones with lower gray-level
values.
"""
ivector = self.coefficients['ivector']
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
lilae = numpy.sum(self.P_glszm * (jvector[None, None, :] ** 2) / (ivector[None, :, None] ** 2), (1, 2)) / Nz
return lilae
def getLargeAreaHighGrayLevelEmphasisFeatureValue(self):
r"""
**16. Large Area High Gray Level Emphasis (LAHGLE)**
.. math::
\textit{LAHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)i^2j^2}}{N_z}
LAHGLE measures the proportion in the image of the joint distribution of larger size zones with higher gray-level
values.
"""
ivector = self.coefficients['ivector']
jvector = self.coefficients['jvector']
Nz = self.coefficients['Nz']
hilae = numpy.sum(self.P_glszm * (ivector[None, :, None] ** 2) * (jvector[None, None, :] ** 2), (1, 2)) / Nz
return hilae