-
Notifications
You must be signed in to change notification settings - Fork 25
/
test_on_trained_model_by_us.py
97 lines (86 loc) · 2.83 KB
/
test_on_trained_model_by_us.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from util.vision_util import process_vision_info
from pprint import pprint
model_dir = "train_output/20241012181406/"
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_dir, torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2-VL-2B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained(model_dir, padding_side="left")
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages1 = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "test_data/4.png",
},
{"type": "text", "text": "描述一下这个图片"},
],
}
]
messages2 = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "test_data/5.png",
},
{"type": "text", "text": "描述一下这个图片"},
],
}
]
messages3 = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "test_data/1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "描述一下这个视频"},
],
}
]
# Preparation for inference
# text = processor.apply_chat_template(
# messages, tokenize=False, add_generation_prompt=True
# )
messages = [messages1, messages2, messages3]
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
pprint(output_text)