-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrespondence.py
690 lines (638 loc) · 19.6 KB
/
correspondence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import torch
from torch import nn
from torch.autograd import Variable
from modelVQContext import GRASSDecoder
from draw3dOBB import showGenshape
from chairDataset import ChairDataset
import util
from torchfoldext import FoldExt
from modelVQContext import GRASSMerge
from chairDataset import Tree
import math
import random
from scipy.io import savemat
from itertools import combinations
import os
def vrrotvec2mat(rotvector):
s = math.sin(rotvector[3])
c = math.cos(rotvector[3])
t = 1 - c
x = rotvector[0]
y = rotvector[1]
z = rotvector[2]
m = torch.FloatTensor([[t*x*x+c, t*x*y-s*z, t*x*z+s*y], [t*x*y+s*z, t*y*y+c, t*y*z-s*x], [t*x*z-s*y, t*y*z+s*x, t*z*z+c]])
return m
def decode_structure(root, noise=False):
"""
Decode a root code into a tree structure of boxes
"""
# decode = model.sampleDecoder(root_code)
syms = [torch.ones(8).mul(10)]
stack = [root]
boxes = []
labels = []
while len(stack) > 0:
node = stack.pop()
# label_prob = model.nodeClassifier(f)
# _, label = torch.max(label_prob, 1)
#label = node.label.item()
if node.is_adj(): # ADJ
# left, right = model.adjDecoder(f)
stack.append(node.left)
stack.append(node.right)
s = syms.pop()
syms.append(s)
syms.append(s)
if node.is_sym(): # SYM
# left, s = model.symDecoder(f)
# s = s.squeeze(0)
stack.append(node.left)
syms.pop()
if noise:
syms.append(node.sym_noise.squeeze(0))
else:
syms.append(node.sym.squeeze(0))
if node.is_leaf(): # BOX
if noise:
reBox = node.box_noise
else:
reBox = node.box
reBoxes = [reBox]
reLabels = [node.box_label]
s = syms.pop()
l1 = abs(s[0] + 1)
l2 = abs(s[0])
l3 = abs(s[0] - 1)
if l1 < 0.15:
sList = torch.split(s, 1, 0)
bList = torch.split(reBox.data.squeeze(0), 1, 0)
f1 = torch.cat([sList[1], sList[2], sList[3]])
f1 = f1/torch.norm(f1)
f2 = torch.cat([sList[4], sList[5], sList[6]])
folds = round(1/s[7].item())
for i in range(folds-1):
rotvector = torch.cat([f1, sList[7].mul(2*3.1415).mul(i+1)])
rotm = vrrotvec2mat(rotvector)
center = torch.cat([bList[0], bList[1], bList[2]])
dir0 = torch.cat([bList[3], bList[4], bList[5]])
dir1 = torch.cat([bList[6], bList[7], bList[8]])
dir2 = torch.cat([bList[9], bList[10], bList[11]])
newcenter = rotm.matmul(center.add(-f2)).add(f2)
newdir1 = rotm.matmul(dir1)
newdir2 = rotm.matmul(dir2)
newbox = torch.cat([newcenter, dir0, newdir1, newdir2])
reBoxes.append(newbox.unsqueeze(0))
reLabels.append(node.box_label)
if l3 < 0.15:
sList = torch.split(s, 1, 0)
bList = torch.split(reBox.data.squeeze(0), 1, 0)
trans = torch.cat([sList[1], sList[2], sList[3]])
trans_end = torch.cat([sList[4], sList[5], sList[6]])
center = torch.cat([bList[0], bList[1], bList[2]])
trans_length = math.sqrt(torch.sum(trans**2))
trans_total = math.sqrt(torch.sum(trans_end.add(-center)**2))
folds = round(trans_total/trans_length)
for i in range(folds):
center = torch.cat([bList[0], bList[1], bList[2]])
dir0 = torch.cat([bList[3], bList[4], bList[5]])
dir1 = torch.cat([bList[6], bList[7], bList[8]])
dir2 = torch.cat([bList[9], bList[10], bList[11]])
newcenter = center.add(trans.mul(i+1))
newbox = torch.cat([newcenter, dir0, dir1, dir2])
reBoxes.append(newbox.unsqueeze(0))
reLabels.append(node.box_label)
if l2 < 0.15:
sList = torch.split(s, 1, 0)
bList = torch.split(reBox.data.squeeze(0), 1, 0)
ref_normal = torch.cat([sList[1], sList[2], sList[3]])
ref_normal = ref_normal/torch.norm(ref_normal)
ref_point = torch.cat([sList[4], sList[5], sList[6]])
center = torch.cat([bList[0], bList[1], bList[2]])
dir0 = torch.cat([bList[3], bList[4], bList[5]])
dir1 = torch.cat([bList[6], bList[7], bList[8]])
dir2 = torch.cat([bList[9], bList[10], bList[11]])
if ref_normal.matmul(ref_point.add(-center)) < 0:
ref_normal = -ref_normal
newcenter = ref_normal.mul(2*abs(torch.sum(ref_point.add(-center).mul(ref_normal)))).add(center)
if ref_normal.matmul(dir1) < 0:
ref_normal = -ref_normal
dir1 = dir1.add(ref_normal.mul(-2*ref_normal.matmul(dir1)))
if ref_normal.matmul(dir2) < 0:
ref_normal = -ref_normal
dir2 = dir2.add(ref_normal.mul(-2*ref_normal.matmul(dir2)))
newbox = torch.cat([newcenter, dir0, dir1, dir2])
reBoxes.append(newbox.unsqueeze(0))
reLabels.append(node.box_label)
boxes.extend(reBoxes)
labels.extend(reLabels)
return boxes, labels
def encode_tree(model, tree):
def encode_node(node):
if node.is_leaf():
if config.finetune:
n = model.leafNode(node.box_noise)
else:
n = model.leafNode(node.box)
return n
if node.is_adj():
left = encode_node(node.left)
right = encode_node(node.right)
n = model.adjNode(left, right)
return n
if node.is_sym():
feature = encode_node(node.left)
if config.finetune:
n = model.symNode(feature, node.sym_noise)
else:
n = model.symNode(feature, node.sym)
return n
encoding = encode_node(tree.root)
return encoding
def decode_tree(model, feature, tree):
def encode_node(node):
if node.is_leaf():
if config.finetune:
b = node.box_noise
else:
b = node.box
if config.cuda:
n = model.leafNode(b.cuda())
else:
n = model.leafNode(b)
return n
if node.is_adj():
left = encode_node(node.left)
right = encode_node(node.right)
n = model.adjNode(left, right)
return n
if node.is_sym():
feature = encode_node(node.left)
if config.finetune:
s = node.sym_noise
else:
s = node.sym
if config.cuda:
n = model.symNode(feature, s.cuda())
else:
n = model.symNode(feature, s)
return n
def decode_node(feature, node):
if node.is_leaf():
return 0
elif node.is_adj():
node_loss, feature = model.vqlizationWithLoss(feature)
left_node = node.left
right_node = node.right
fl = encode_node(left_node)
fr = encode_node(right_node)
left_f = model.outterNode(feature, fr)
right_f = model.outterNode(feature, fl)
left_loss = decode_node(left_f, node.left)
right_loss = decode_node(right_f, node.right)
return left_loss + right_loss + node_loss
elif node.is_sym():
node_loss, feature = model.vqlizationWithLoss(feature)
f = encode_node(node)
new_f, sym_f = model.symParaNode(feature, f)
left_loss = decode_node(new_f, node.left)
return left_loss + node_loss
loss = decode_node(feature, tree.root)
return loss
def my_collate(batch):
return batch
def inference(example):
enc_fold = FoldExt(cuda=config.cuda)
enc_fold_nodes = []
enc_fold_nodes.append(encode_fold(enc_fold, example))
enc_fold_nodes = enc_fold.apply(model, [enc_fold_nodes])
enc_fold_nodes = torch.split(enc_fold_nodes[0], 1, 0)
refineboxes = []
syms = []
Labels = []
decode_fold(model, enc_fold_nodes[0], example, refineboxes, syms, Labels)
refineboxes = torch.cat(refineboxes, 0)
refineLabels = torch.Tensor(Labels, 0)
if len(syms) == 0:
syms = torch.zeros((1, 8))
else:
syms = torch.cat(syms, 0)
refine_tree = Tree(refineboxes, example.ops, syms, refineLabels)
return refine_tree
def dfs_b_find_min_id(tree_b):
def dfs_id(node):
global min_id
global min_loss
if node.is_leaf():
if node.loss < min_loss:
min_loss = node.loss
min_id = node.id
elif node.is_adj():
dfs_id(node.left)
dfs_id(node.right)
if node.loss < min_loss:
min_loss = node.loss
min_id = node.id
else:
if node.loss < min_loss:
min_loss = node.loss
min_id = node.id
global min_id
min_id = 0
global min_loss
min_loss = 999
dfs_id(tree_b.root)
return min_id
def find_node_num(node):
if node.is_leaf():
#assign loss to each node of tree b
return 0
elif node.is_adj():
left_num = find_node_num(node.left)
right_num = find_node_num(node.right)
return left_num + right_num + 1
else:
left_num = find_node_num(node.left)
return left_num + 1
def find_correspondence_loss(node_a, tree_b, model):
def dfs_b(node):
if node.is_adj():
#check left child
#print('node_a label, ', node_a.box_label)
#print('node.left label, ', node.left.box_label)
if node.left.box_label == node_a.box_label:
print('replace node id of b: ', node.left.id)
print('replace node type of b: ', node.left.node_type)
temp = node.left
node.left = node_a
#get error
loss_node_num = find_node_num(tree_b.root)
root_feature = encode_tree(model, tree_b)
loss = decode_tree(model, root_feature, tree_b)
#change to original
node.left = temp
node.left.loss = loss
print('replace loss : ', loss)
print('replace loss ava : ', node.left.loss)
if node.left.is_adj():
dfs_b(node.left)
#print('node_a label, ', node_a.box_label)
#print('node.right label, ', node.right.box_label)
if node.right.box_label == node_a.box_label:
print('replace node id of b: ', node.right.id)
print('replace node type of b: ', node.right.node_type)
temp = node.right
node.right = node_a
#get error
loss_node_num = find_node_num(tree_b.root)
root_feature = encode_tree(model, tree_b)
loss = decode_tree(model, root_feature, tree_b)
node.right = temp
node.right.loss = loss
print('replace loss : ', loss)
print('replace loss ava : ', node.right.loss)
if node.right.is_adj():
dfs_b(node.right)
dfs_b(tree_b.root)
def clean_tree_loss(node):
if node.is_leaf():
#assign loss to each node of tree b
node.loss = 999
elif node.is_adj():
clean_tree_loss(node.left)
clean_tree_loss(node.right)
node.loss = 999
else:
node.loss = 999
def dfs_a(node, tree_b, model):
#find which node of tree A need to be dealt with
if node.is_leaf():
print('check id of a leaf: ', node.id)
#assign loss to each node of tree b
find_correspondence_loss(node, tree_b, model)
#find the best match node in tree b
node.match_id = dfs_b_find_min_id(tree_b)
print('find match id of b: ', node.match_id)
clean_tree_loss(tree_b.root)
elif node.is_adj():
dfs_a(node.left, tree_b, model)
dfs_a(node.right, tree_b, model)
else:
print('check id of a sym: ', node.id)
#assign loss to each node of tree b
find_correspondence_loss(node, tree_b, model)
#find the best node in tree b
node.match_id = dfs_b_find_min_id(tree_b)
print('find match id of b: ', node.match_id)
clean_tree_loss(tree_b.root)
def dfs_assign_label(node):
if node.is_leaf():
return node.box_label
elif node.is_adj():
left_label = dfs_assign_label(node.left)
right_label = dfs_assign_label(node.right)
if left_label == right_label:
node.box_label = left_label
return node.box_label
else:
left_label = dfs_assign_label(node.left)
node.box_label = left_label
return node.box_label
def find_box_from_node(node):
if node.is_leaf():
return node.box
elif node.is_adj():
left_boxes = find_box_from_node(node.left)
right_boxes = find_box_from_node(node.right)
return torch.cat((left_boxes, right_boxes), 0)
else:
left_boxes = find_box_from_node(node.left)
return left_boxes
def find_box_from_tree_b(node, match_id):
if node.is_leaf():
if node.id == match_id:
return node.box
elif node.is_adj():
if node.id == match_id:
return find_box_from_node(node)
#if children match
left_result = find_box_from_tree_b(node.left, match_id)
right_result = find_box_from_tree_b(node.right, match_id)
if left_result is not None:
return left_result
if right_result is not None:
return right_result
else:
if node.id == match_id:
return find_box_from_node(node)
def show_correspondence(tree_a, tree_b):
def dfs_a_show(node):
if node.is_leaf():
print('print node id of a, ', node.id)
print('print node.match_id of b, ', node.match_id)
if node.match_id == 0:
print('No match found for this node!!! ')
return
box_b = find_box_from_tree_b(tree_b.root, node.match_id)
#print('node.box, ', node.box.size())
#print('box_b, ', box_b.size())
boxes = torch.cat((node.box, box_b), 0)
label_text = []
label_text.append('shape_a_part')
for i in range(box_b.size(0)):
label_text.append('shape_b_part')
showGenshape(boxes.data.cpu().numpy(), labels=label_text)
return
elif node.is_adj():
dfs_a_show(node.left)
dfs_a_show(node.right)
else:
print('print node id of a, ', node.id)
print('print node.match_id of b, ', node.match_id)
if node.match_id == 0:
print('No match found for this node!!! ')
return
box_a = find_box_from_node(node)
box_b = find_box_from_tree_b(tree_b.root, node.match_id)
boxes = torch.cat((box_a, box_b), 0)
label_text = []
for i in range(box_a.size(0)):
label_text.append('shape_a_part')
for i in range(box_b.size(0)):
label_text.append('shape_b_part')
showGenshape(boxes.data.cpu().numpy(), labels=label_text)
return
dfs_a_show(tree_a.root)
def give_valid_to_tree_b(tree_b, match_b_ids):
def dfs_b_sample(node):
if node.is_leaf():
#not in match id
#print('b, ', node.id)
if node.id not in match_b_ids:
#print('select_id b, ', node.id)
node.selected = True
return True
else:
return False
elif node.is_adj():
#print('b, ', node.id)
if node.id == 0 or node.id not in match_b_ids:
left_s = dfs_b_sample(node.left)
right_s = dfs_b_sample(node.right)
if left_s and right_s:
#print('select_id b, ', node.id)
node.selected = True
return True
else:
node.selected = False
return False
else:
node.selected = False
return False
else:
#print('b, ', node.id)
if node.id not in match_b_ids:
#print('select_id b, ', node.id)
node.selected = True
return True
else:
return False
dfs_b_sample(tree_b.root)
def sample_id_from_tree_b(tree_b, selected_b_ids):
def dfs_b_sample_valid(node):
if node.is_leaf():
if node.selected:
selected_b_ids.append(node.id)
elif node.is_adj():
if node.selected:
selected_b_ids.append(node.id)
return
else:
dfs_b_sample_valid(node.left)
dfs_b_sample_valid(node.right)
else:
if node.selected:
selected_b_ids.append(node.id)
dfs_b_sample_valid(tree_b.root)
def sample_id_from_tree_a(tree_a, selected_a_ids, match_b_ids):
def dfs_a_sample(node):
if node.is_leaf():
if random.randint(0,10) > 5:
selected_a_ids.append(node.id)
if node.match_id != 0:
match_b_ids.append(node.match_id)
elif node.is_adj():
dfs_a_sample(node.left)
dfs_a_sample(node.right)
else:
if random.randint(0,10) > 5:
selected_a_ids.append(node.id)
if node.match_id != 0:
match_b_ids.append(node.match_id)
dfs_a_sample(tree_a.root)
def clean_tree(node):
node.loss = 999
node.match_id = None
node.selected = False
if node.is_leaf():
return
elif node.is_adj():
clean_tree(node.left)
clean_tree(node.right)
else:
return
def find_all_node_num(node):
if node.is_leaf():
#assign loss to each node of tree b
return 1
elif node.is_adj():
left_num = find_node_num(node.left)
right_num = find_node_num(node.right)
return left_num + right_num + 1
else:
left_num = find_node_num(node.left)
return left_num + 1
if __name__ == '__main__':
config = util.get_args()
config.cuda = config.no_cuda
if config.gpu < 0 and config.cuda:
config.gpu = 0
torch.cuda.set_device(config.gpu)
if config.cuda and torch.cuda.is_available():
print("using CUDA on GPU ", config.gpu)
else:
print("Not using CUDA")
encoder = torch.load('./models/vq_encoder_model_finetune.pkl')
decoder = torch.load('./models/vq_decoder_model_finetune.pkl')
model = GRASSMerge(config, encoder, decoder)
model.cpu()
model.eval()
if config.finetune:
print("fintune phase")
result_path = './result/'+config.testset
if not os.path.exists(result_path):
os.makedirs(result_path)
grass_data = ChairDataset(config.data_path, data_name=config.testset)
iters = combinations(list(range(grass_data.data_size)), 2)
final_result = []
count = 0
for it in iters:
trees = []
for idx in it:
trees.append(grass_data[idx])
#assign label
num_0 = find_all_node_num(trees[0].root)
num_1 = find_all_node_num(trees[1].root)
if num_0 > num_1:
tree_a = trees[1]
tree_b = trees[0]
else:
tree_a = trees[0]
tree_b = trees[1]
dfs_assign_label(tree_a.root)
dfs_assign_label(tree_b.root)
dfs_a(tree_a.root, tree_b, model)
# if count == 0:
# boxes_a, labels_a = decode_structure(tree_a.root)
# label_text = []
# for label in labels_a:
# if label == 0:
# label_text.append('back')
# elif label == 1:
# label_text.append('seat')
# elif label == 2:
# label_text.append('leg')
# elif label == 3:
# label_text.append('armrest')
# showGenshape(torch.cat(boxes_a,0).data.cpu().numpy(), labels = label_text)
# boxes_b, labels_b = decode_structure(tree_b.root)
# label_text = []
# for label in labels_b:
# if label == 0:
# label_text.append('back')
# elif label == 1:
# label_text.append('seat')
# elif label == 2:
# label_text.append('leg')
# elif label == 3:
# label_text.append('armrest')
# showGenshape(torch.cat(boxes_b,0).data.cpu().numpy(), labels = label_text)
# show_correspondence(tree_a, tree_b)
#sample_labels = random.sample(range(4), 2)
selected_a_ids = []
match_b_ids = []
while len(selected_a_ids) < 1:
sample_id_from_tree_a(tree_a, selected_a_ids, match_b_ids)
give_valid_to_tree_b(tree_b, match_b_ids)
selected_b_ids = []
sample_id_from_tree_b(tree_b, selected_b_ids)
print('selected_a_ids', selected_a_ids)
print('match_b_ids', match_b_ids)
print('selected_b_ids', selected_b_ids)
if(len(selected_b_ids) == 0):
continue
shape_pair_ids = {}
shape_pair_ids['shape_%d_index' % 0] = tree_a.id
shape_pair_ids['shape_%d_ids' % 0] = selected_a_ids
shape_pair_ids['shape_%d_index' % 1] = tree_b.id
shape_pair_ids['shape_%d_ids' % 1] = selected_b_ids
shape_pair_ids['valid_shapes'] = 2
print('shape_pair_ids', shape_pair_ids)
final_result.append(shape_pair_ids)
# shape_pair_ids={'shape_a_index':i, 'shape_b_index':i+1, 'selected_a_ids': selected_a_ids, 'selected_b_ids':selected_b_ids}
# final_result.append(shape_pair_ids)
clean_tree(tree_a.root)
clean_tree(tree_b.root)
count += 1
savemat(result_path + "/shape_node_ids_2_shapes.mat", {'final_result':final_result})
# boxes, labels = decode_structure(tree_a.root)
# label_text = []
# for label in labels:
# if label == 0:
# label_text.append('back')
# elif label == 1:
# label_text.append('seat')
# elif label == 2:
# label_text.append('leg')
# elif label == 3:
# label_text.append('armrest')
# showGenshape(torch.cat(boxes,0).data.cpu().numpy(), labels=label_text)
# boxes, labels = decode_structure(tree_b.root)
# label_text = []
# for label in labels:
# if label == 0:
# label_text.append('back')
# elif label == 1:
# label_text.append('seat')
# elif label == 2:
# label_text.append('leg')
# elif label == 3:
# label_text.append('armrest')
# showGenshape(torch.cat(boxes,0).data.cpu().numpy(), labels=label_text)
# example.addNoise()
# boxes, labels = decode_structure(example.root, noise=True)
# label_text = []
# for label in labels:
# if label == 0:
# label_text.append('back')
# elif label == 1:
# label_text.append('seat')
# elif label == 2:
# label_text.append('leg')
# elif label == 3:
# label_text.append('armrest')
# showGenshape(torch.cat(boxes,0).data.cpu().numpy(), labels=label_text)
# refine_tree = example
# for i in range(1):
# refine_tree = inference(refine_tree)
# boxes, labels = decode_structure(refine_tree.root)
# label_text = []
# for label in labels:
# if label == 0:
# label_text.append('back')
# elif label == 1:
# label_text.append('seat')
# elif label == 2:
# label_text.append('leg')
# elif label == 3:
# label_text.append('armrest')
# showGenshape(torch.cat(boxes,0).data.cpu().numpy(), labels=label_text)